Split up the forward DCT routine into three stages

Divide it into sample conversion, DCT and quantization in order to
easily provide alternative implementations of each stage.


git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@13 632fc199-4ca6-4c93-a231-07263d6284db
This commit is contained in:
Pierre Ossman
2009-03-09 10:37:20 +00:00
parent 5557fd2217
commit 49dcbfbf13
2 changed files with 201 additions and 113 deletions

View File

@@ -19,11 +19,30 @@
/* Private subobject for this module */ /* Private subobject for this module */
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
typedef JMETHOD(void, convsamp_method_ptr,
(JSAMPARRAY sample_data, JDIMENSION start_col,
DCTELEM * workspace));
typedef JMETHOD(void, float_convsamp_method_ptr,
(JSAMPARRAY sample_data, JDIMENSION start_col,
FAST_FLOAT *workspace));
typedef JMETHOD(void, quantize_method_ptr,
(JCOEFPTR coef_block, DCTELEM * divisors,
DCTELEM * workspace));
typedef JMETHOD(void, float_quantize_method_ptr,
(JCOEFPTR coef_block, FAST_FLOAT * divisors,
FAST_FLOAT * workspace));
typedef struct { typedef struct {
struct jpeg_forward_dct pub; /* public fields */ struct jpeg_forward_dct pub; /* public fields */
/* Pointer to the DCT routine actually in use */ /* Pointer to the DCT routine actually in use */
forward_DCT_method_ptr do_dct; forward_DCT_method_ptr dct;
convsamp_method_ptr convsamp;
quantize_method_ptr quantize;
/* The actual post-DCT divisors --- not identical to the quant table /* The actual post-DCT divisors --- not identical to the quant table
* entries, because of scaling (especially for an unnormalized DCT). * entries, because of scaling (especially for an unnormalized DCT).
@@ -33,7 +52,9 @@ typedef struct {
#ifdef DCT_FLOAT_SUPPORTED #ifdef DCT_FLOAT_SUPPORTED
/* Same as above for the floating-point case. */ /* Same as above for the floating-point case. */
float_DCT_method_ptr do_float_dct; float_DCT_method_ptr float_dct;
float_convsamp_method_ptr float_convsamp;
float_quantize_method_ptr float_quantize;
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
#endif #endif
} my_fdct_controller; } my_fdct_controller;
@@ -169,38 +190,20 @@ start_pass_fdctmgr (j_compress_ptr cinfo)
/* /*
* Perform forward DCT on one or more blocks of a component. * Load data into workspace, applying unsigned->signed conversion.
*
* The input samples are taken from the sample_data[] array starting at
* position start_row/start_col, and moving to the right for any additional
* blocks. The quantized coefficients are returned in coef_blocks[].
*/ */
METHODDEF(void) METHODDEF(void)
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace)
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for integer DCT implementations. */
{ {
/* This routine is heavily used, so it's worth coding it tightly. */ register DCTELEM *workspaceptr;
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
forward_DCT_method_ptr do_dct = fdct->do_dct;
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
/* Load data into workspace, applying unsigned->signed conversion */
{ register DCTELEM *workspaceptr;
register JSAMPROW elemptr; register JSAMPROW elemptr;
register int elemr; register int elemr;
workspaceptr = workspace; workspaceptr = workspace;
for (elemr = 0; elemr < DCTSIZE; elemr++) { for (elemr = 0; elemr < DCTSIZE; elemr++) {
elemptr = sample_data[elemr] + start_col; elemptr = sample_data[elemr] + start_col;
#if DCTSIZE == 8 /* unroll the inner loop */ #if DCTSIZE == 8 /* unroll the inner loop */
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
@@ -211,26 +214,31 @@ forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
#else #else
{ register int elemc; {
for (elemc = DCTSIZE; elemc > 0; elemc--) { register int elemc;
for (elemc = DCTSIZE; elemc > 0; elemc--)
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
} }
}
#endif #endif
} }
} }
/* Perform the DCT */
(*do_dct) (workspace);
/* Quantize/descale the coefficients, and store into coef_blocks[] */ /*
{ register DCTELEM temp, qval; * Quantize/descale the coefficients, and store into coef_blocks[].
*/
METHODDEF(void)
quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace)
{
register DCTELEM temp, qval;
register int i; register int i;
register JCOEFPTR output_ptr = coef_blocks[bi]; register JCOEFPTR output_ptr = coef_block;
for (i = 0; i < DCTSIZE2; i++) { for (i = 0; i < DCTSIZE2; i++) {
qval = divisors[i]; qval = divisors[i];
temp = workspace[i]; temp = workspace[i];
/* Divide the coefficient value by qval, ensuring proper rounding. /* Divide the coefficient value by qval, ensuring proper rounding.
* Since C does not specify the direction of rounding for negative * Since C does not specify the direction of rounding for negative
* quotients, we have to force the dividend positive for portability. * quotients, we have to force the dividend positive for portability.
@@ -248,6 +256,7 @@ forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
#else #else
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
#endif #endif
if (temp < 0) { if (temp < 0) {
temp = -temp; temp = -temp;
temp += qval>>1; /* for rounding */ temp += qval>>1; /* for rounding */
@@ -260,31 +269,56 @@ forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
output_ptr[i] = (JCOEF) temp; output_ptr[i] = (JCOEF) temp;
} }
} }
/*
* Perform forward DCT on one or more blocks of a component.
*
* The input samples are taken from the sample_data[] array starting at
* position start_row/start_col, and moving to the right for any additional
* blocks. The quantized coefficients are returned in coef_blocks[].
*/
METHODDEF(void)
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for integer DCT implementations. */
{
/* This routine is heavily used, so it's worth coding it tightly. */
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
/* Make sure the compiler doesn't look up these every pass */
forward_DCT_method_ptr do_dct = fdct->dct;
convsamp_method_ptr do_convsamp = fdct->convsamp;
quantize_method_ptr do_quantize = fdct->quantize;
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
/* Load data into workspace, applying unsigned->signed conversion */
(*do_convsamp) (sample_data, start_col, workspace);
/* Perform the DCT */
(*do_dct) (workspace);
/* Quantize/descale the coefficients, and store into coef_blocks[] */
(*do_quantize) (coef_blocks[bi], divisors, workspace);
} }
} }
#ifdef DCT_FLOAT_SUPPORTED #ifdef DCT_FLOAT_SUPPORTED
METHODDEF(void) METHODDEF(void)
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace)
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for floating-point DCT implementations. */
{ {
/* This routine is heavily used, so it's worth coding it tightly. */ register FAST_FLOAT *workspaceptr;
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
float_DCT_method_ptr do_dct = fdct->do_float_dct;
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
/* Load data into workspace, applying unsigned->signed conversion */
{ register FAST_FLOAT *workspaceptr;
register JSAMPROW elemptr; register JSAMPROW elemptr;
register int elemr; register int elemr;
@@ -301,27 +335,28 @@ forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
#else #else
{ register int elemc; {
for (elemc = DCTSIZE; elemc > 0; elemc--) { register int elemc;
for (elemc = DCTSIZE; elemc > 0; elemc--)
*workspaceptr++ = (FAST_FLOAT) *workspaceptr++ = (FAST_FLOAT)
(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
} }
}
#endif #endif
} }
} }
/* Perform the DCT */
(*do_dct) (workspace);
/* Quantize/descale the coefficients, and store into coef_blocks[] */ METHODDEF(void)
{ register FAST_FLOAT temp; quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace)
{
register FAST_FLOAT temp;
register int i; register int i;
register JCOEFPTR output_ptr = coef_blocks[bi]; register JCOEFPTR output_ptr = coef_block;
for (i = 0; i < DCTSIZE2; i++) { for (i = 0; i < DCTSIZE2; i++) {
/* Apply the quantization and scaling factor */ /* Apply the quantization and scaling factor */
temp = workspace[i] * divisors[i]; temp = workspace[i] * divisors[i];
/* Round to nearest integer. /* Round to nearest integer.
* Since C does not specify the direction of rounding for negative * Since C does not specify the direction of rounding for negative
* quotients, we have to force the dividend positive for portability. * quotients, we have to force the dividend positive for portability.
@@ -331,6 +366,37 @@ forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
} }
} }
METHODDEF(void)
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for floating-point DCT implementations. */
{
/* This routine is heavily used, so it's worth coding it tightly. */
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
/* Make sure the compiler doesn't look up these every pass */
float_DCT_method_ptr do_dct = fdct->float_dct;
float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
float_quantize_method_ptr do_quantize = fdct->float_quantize;
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
/* Load data into workspace, applying unsigned->signed conversion */
(*do_convsamp) (sample_data, start_col, workspace);
/* Perform the DCT */
(*do_dct) (workspace);
/* Quantize/descale the coefficients, and store into coef_blocks[] */
(*do_quantize) (coef_blocks[bi], divisors, workspace);
} }
} }
@@ -353,23 +419,48 @@ jinit_forward_dct (j_compress_ptr cinfo)
cinfo->fdct = (struct jpeg_forward_dct *) fdct; cinfo->fdct = (struct jpeg_forward_dct *) fdct;
fdct->pub.start_pass = start_pass_fdctmgr; fdct->pub.start_pass = start_pass_fdctmgr;
/* First determine the DCT... */
switch (cinfo->dct_method) { switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED #ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW: case JDCT_ISLOW:
fdct->pub.forward_DCT = forward_DCT; fdct->pub.forward_DCT = forward_DCT;
fdct->do_dct = jpeg_fdct_islow; fdct->dct = jpeg_fdct_islow;
break; break;
#endif #endif
#ifdef DCT_IFAST_SUPPORTED #ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST: case JDCT_IFAST:
fdct->pub.forward_DCT = forward_DCT; fdct->pub.forward_DCT = forward_DCT;
fdct->do_dct = jpeg_fdct_ifast; fdct->dct = jpeg_fdct_ifast;
break; break;
#endif #endif
#ifdef DCT_FLOAT_SUPPORTED #ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT: case JDCT_FLOAT:
fdct->pub.forward_DCT = forward_DCT_float; fdct->pub.forward_DCT = forward_DCT_float;
fdct->do_float_dct = jpeg_fdct_float; fdct->float_dct = jpeg_fdct_float;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
/* ...then the supporting stages. */
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
#endif
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
fdct->convsamp = convsamp;
fdct->quantize = quantize;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
fdct->float_convsamp = convsamp_float;
fdct->float_quantize = quantize_float;
break; break;
#endif #endif
default: default:

3
jdct.h
View File

@@ -32,9 +32,6 @@ typedef int DCTELEM; /* 16 or 32 bits is fine */
typedef INT32 DCTELEM; /* must have 32 bits */ typedef INT32 DCTELEM; /* must have 32 bits */
#endif #endif
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
/* /*
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer