Optimize Huffman encoding
This commit improves the C and SSE2 Huffman encoding implementations in
the following ways:
- Avoid using xmm8-xmm15 in the x86-64 SSE2 implementation. There is no
actual need to use those registers, and avoiding them produces a
cleaner WIN64 function entry/exit-- as well as shorter code, since REX
prefixes can be avoided (this is helpful on certain CPUs, such as
Intel Atom, for which instruction fetch and decoding can be a
bottleneck.)
- Optimize register usage so that fewer REX prefixes and
register-register moves are needed.
- Use the bit counter to store the number of free bits in the bit buffer
rather than the number of bits in the bit buffer. This changes the
method for inserting a code into the bit buffer to:
(put_buffer |= code << (free_bits -= code_size));
As a result:
* Only one bit counter needs to stay in a register (we just keep it in
cl.)
* The bit buffer contents are already properly aligned to be written
out (after a byte swap.)
* Adjusting the free bits counter and checking if the bit buffer is
full can be combined into a single operation.
* We can wait to flush the bit buffer until the buffer is actually
full and not just in danger of becoming full. Thus, eight bytes can
be flushed at a time.
- Speed is quite sensitive to the alignment of branch target labels, so
insert some padding and remove branches from the flush code.
(Flushing this way isn't actually faster when compared to using
branches, but the branchless code doesn't need extra alignment and is
thus smaller.)
- Speculatively write out the bit buffer as a single 8-byte write,
falling back to a byte-by-byte write only if there are any 0xFF bytes
in the bit buffer that need to be encoded as 0xFF 0x00.
- Use MMX registers for the 32-bit implementation (so the bit buffer can
be 64 bits wide.)
- Slightly reduce overall function code size.
- Eliminate or combine a few SSE instructions.
- Make some minor improvements to instruction scheduling.
- Adjust flush_bits() in jchuff.c to handle cases in which the bit
buffer has less than 7 free bits (apparently that couldn't happen
before.)
Based on:
947a09defa
262ebb6b81
6e9a091221
See change log for performance claims.
Closes #292
This commit is contained in:
352
jchuff.c
352
jchuff.c
@@ -72,9 +72,33 @@ typedef unsigned long long bit_buf_type;
|
||||
typedef size_t bit_buf_type;
|
||||
#endif
|
||||
|
||||
/* NOTE: The more optimal Huffman encoding algorithm has not yet been
|
||||
* implemented in the ARM NEON SIMD extensions, which is why we retain the old
|
||||
* Huffman encoder behavior for that platform.
|
||||
*/
|
||||
#if defined(WITH_SIMD) && !(defined(__arm__) || defined(__aarch64__))
|
||||
typedef unsigned long long simd_bit_buf_type;
|
||||
#else
|
||||
typedef bit_buf_type simd_bit_buf_type;
|
||||
#endif
|
||||
|
||||
#if (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 8) || defined(_WIN64) || \
|
||||
(defined(__x86_64__) && defined(__ILP32__))
|
||||
#define BIT_BUF_SIZE 64
|
||||
#elif (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 4) || defined(_WIN32)
|
||||
#define BIT_BUF_SIZE 32
|
||||
#else
|
||||
#error Cannot determine word size
|
||||
#endif
|
||||
#define SIMD_BIT_BUF_SIZE (sizeof(simd_bit_buf_type) * 8)
|
||||
|
||||
typedef struct {
|
||||
bit_buf_type put_buffer; /* current bit-accumulation buffer */
|
||||
int put_bits; /* # of bits now in it */
|
||||
union {
|
||||
bit_buf_type c;
|
||||
simd_bit_buf_type simd;
|
||||
} put_buffer; /* current bit accumulation buffer */
|
||||
int free_bits; /* # of bits available in it */
|
||||
/* (ARM SIMD: # of bits now in it) */
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
} savable_state;
|
||||
|
||||
@@ -110,6 +134,7 @@ typedef struct {
|
||||
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
||||
savable_state cur; /* Current bit buffer & DC state */
|
||||
j_compress_ptr cinfo; /* dump_buffer needs access to this */
|
||||
int simd;
|
||||
} working_state;
|
||||
|
||||
|
||||
@@ -188,8 +213,17 @@ start_pass_huff(j_compress_ptr cinfo, boolean gather_statistics)
|
||||
}
|
||||
|
||||
/* Initialize bit buffer to empty */
|
||||
entropy->saved.put_buffer = 0;
|
||||
entropy->saved.put_bits = 0;
|
||||
if (entropy->simd) {
|
||||
entropy->saved.put_buffer.simd = 0;
|
||||
#if defined(__arm__) || defined(__aarch64__)
|
||||
entropy->saved.free_bits = 0;
|
||||
#else
|
||||
entropy->saved.free_bits = SIMD_BIT_BUF_SIZE;
|
||||
#endif
|
||||
} else {
|
||||
entropy->saved.put_buffer.c = 0;
|
||||
entropy->saved.free_bits = BIT_BUF_SIZE;
|
||||
}
|
||||
|
||||
/* Initialize restart stuff */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
@@ -321,94 +355,94 @@ dump_buffer(working_state *state)
|
||||
|
||||
/* Outputting bits to the file */
|
||||
|
||||
/* These macros perform the same task as the emit_bits() function in the
|
||||
* original libjpeg code. In addition to reducing overhead by explicitly
|
||||
* inlining the code, additional performance is achieved by taking into
|
||||
* account the size of the bit buffer and waiting until it is almost full
|
||||
* before emptying it. This mostly benefits 64-bit platforms, since 6
|
||||
* bytes can be stored in a 64-bit bit buffer before it has to be emptied.
|
||||
/* Output byte b and, speculatively, an additional 0 byte. 0xFF must be
|
||||
* encoded as 0xFF 0x00, so the output buffer pointer is advanced by 2 if the
|
||||
* byte is 0xFF. Otherwise, the output buffer pointer is advanced by 1, and
|
||||
* the speculative 0 byte will be overwritten by the next byte.
|
||||
*/
|
||||
|
||||
#define EMIT_BYTE() { \
|
||||
JOCTET c; \
|
||||
put_bits -= 8; \
|
||||
c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
|
||||
*buffer++ = c; \
|
||||
if (c == 0xFF) /* need to stuff a zero byte? */ \
|
||||
*buffer++ = 0; \
|
||||
#define EMIT_BYTE(b) { \
|
||||
buffer[0] = (JOCTET)(b); \
|
||||
buffer[1] = 0; \
|
||||
buffer -= -2 + ((JOCTET)(b) < 0xFF); \
|
||||
}
|
||||
|
||||
#define PUT_BITS(code, size) { \
|
||||
put_bits += size; \
|
||||
put_buffer = (put_buffer << size) | code; \
|
||||
}
|
||||
/* Output the entire bit buffer. If there are no 0xFF bytes in it, then write
|
||||
* directly to the output buffer. Otherwise, use the EMIT_BYTE() macro to
|
||||
* encode 0xFF as 0xFF 0x00.
|
||||
*/
|
||||
#if BIT_BUF_SIZE == 64
|
||||
|
||||
#if SIZEOF_SIZE_T != 8 && !defined(_WIN64)
|
||||
|
||||
#define CHECKBUF15() { \
|
||||
if (put_bits > 15) { \
|
||||
EMIT_BYTE() \
|
||||
EMIT_BYTE() \
|
||||
#define FLUSH() { \
|
||||
if (put_buffer & 0x8080808080808080 & ~(put_buffer + 0x0101010101010101)) { \
|
||||
EMIT_BYTE(put_buffer >> 56) \
|
||||
EMIT_BYTE(put_buffer >> 48) \
|
||||
EMIT_BYTE(put_buffer >> 40) \
|
||||
EMIT_BYTE(put_buffer >> 32) \
|
||||
EMIT_BYTE(put_buffer >> 24) \
|
||||
EMIT_BYTE(put_buffer >> 16) \
|
||||
EMIT_BYTE(put_buffer >> 8) \
|
||||
EMIT_BYTE(put_buffer ) \
|
||||
} else { \
|
||||
buffer[0] = (JOCTET)(put_buffer >> 56); \
|
||||
buffer[1] = (JOCTET)(put_buffer >> 48); \
|
||||
buffer[2] = (JOCTET)(put_buffer >> 40); \
|
||||
buffer[3] = (JOCTET)(put_buffer >> 32); \
|
||||
buffer[4] = (JOCTET)(put_buffer >> 24); \
|
||||
buffer[5] = (JOCTET)(put_buffer >> 16); \
|
||||
buffer[6] = (JOCTET)(put_buffer >> 8); \
|
||||
buffer[7] = (JOCTET)(put_buffer); \
|
||||
buffer += 8; \
|
||||
} \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#define CHECKBUF31() { \
|
||||
if (put_bits > 31) { \
|
||||
EMIT_BYTE() \
|
||||
EMIT_BYTE() \
|
||||
EMIT_BYTE() \
|
||||
EMIT_BYTE() \
|
||||
} \
|
||||
}
|
||||
|
||||
#define CHECKBUF47() { \
|
||||
if (put_bits > 47) { \
|
||||
EMIT_BYTE() \
|
||||
EMIT_BYTE() \
|
||||
EMIT_BYTE() \
|
||||
EMIT_BYTE() \
|
||||
EMIT_BYTE() \
|
||||
EMIT_BYTE() \
|
||||
} \
|
||||
}
|
||||
|
||||
#if !defined(_WIN32) && !defined(SIZEOF_SIZE_T)
|
||||
#error Cannot determine word size
|
||||
#endif
|
||||
|
||||
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
|
||||
|
||||
#define EMIT_BITS(code, size) { \
|
||||
CHECKBUF47() \
|
||||
PUT_BITS(code, size) \
|
||||
}
|
||||
|
||||
#define EMIT_CODE(code, size) { \
|
||||
temp2 &= (((JLONG)1) << nbits) - 1; \
|
||||
CHECKBUF31() \
|
||||
PUT_BITS(code, size) \
|
||||
PUT_BITS(temp2, nbits) \
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define EMIT_BITS(code, size) { \
|
||||
PUT_BITS(code, size) \
|
||||
CHECKBUF15() \
|
||||
}
|
||||
|
||||
#define EMIT_CODE(code, size) { \
|
||||
temp2 &= (((JLONG)1) << nbits) - 1; \
|
||||
PUT_BITS(code, size) \
|
||||
CHECKBUF15() \
|
||||
PUT_BITS(temp2, nbits) \
|
||||
CHECKBUF15() \
|
||||
#define FLUSH() { \
|
||||
if (put_buffer & 0x80808080 & ~(put_buffer + 0x01010101)) { \
|
||||
EMIT_BYTE(put_buffer >> 24) \
|
||||
EMIT_BYTE(put_buffer >> 16) \
|
||||
EMIT_BYTE(put_buffer >> 8) \
|
||||
EMIT_BYTE(put_buffer ) \
|
||||
} else { \
|
||||
buffer[0] = (JOCTET)(put_buffer >> 24); \
|
||||
buffer[1] = (JOCTET)(put_buffer >> 16); \
|
||||
buffer[2] = (JOCTET)(put_buffer >> 8); \
|
||||
buffer[3] = (JOCTET)(put_buffer); \
|
||||
buffer += 4; \
|
||||
} \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* Fill the bit buffer to capacity with the leading bits from code, then output
|
||||
* the bit buffer and put the remaining bits from code into the bit buffer.
|
||||
*/
|
||||
#define PUT_AND_FLUSH(code, size) { \
|
||||
put_buffer = (put_buffer << (size + free_bits)) | (code >> -free_bits); \
|
||||
FLUSH() \
|
||||
free_bits += BIT_BUF_SIZE; \
|
||||
put_buffer = code; \
|
||||
}
|
||||
|
||||
/* Insert code into the bit buffer and output the bit buffer if needed.
|
||||
* NOTE: We can't flush with free_bits == 0, since the left shift in
|
||||
* PUT_AND_FLUSH() would have undefined behavior.
|
||||
*/
|
||||
#define PUT_BITS(code, size) { \
|
||||
free_bits -= size; \
|
||||
if (free_bits < 0) \
|
||||
PUT_AND_FLUSH(code, size) \
|
||||
else \
|
||||
put_buffer = (put_buffer << size) | code; \
|
||||
}
|
||||
|
||||
#define PUT_CODE(code, size) { \
|
||||
temp &= (((JLONG)1) << nbits) - 1; \
|
||||
temp |= code << nbits; \
|
||||
nbits += size; \
|
||||
PUT_BITS(temp, nbits) \
|
||||
}
|
||||
|
||||
|
||||
/* Although it is exceedingly rare, it is possible for a Huffman-encoded
|
||||
* coefficient block to be larger than the 128-byte unencoded block. For each
|
||||
@@ -431,6 +465,7 @@ dump_buffer(working_state *state)
|
||||
|
||||
#define STORE_BUFFER() { \
|
||||
if (localbuf) { \
|
||||
size_t bytes, bytestocopy; \
|
||||
bytes = buffer - _buffer; \
|
||||
buffer = _buffer; \
|
||||
while (bytes > 0) { \
|
||||
@@ -453,20 +488,46 @@ dump_buffer(working_state *state)
|
||||
LOCAL(boolean)
|
||||
flush_bits(working_state *state)
|
||||
{
|
||||
JOCTET _buffer[BUFSIZE], *buffer;
|
||||
bit_buf_type put_buffer; int put_bits;
|
||||
size_t bytes, bytestocopy; int localbuf = 0;
|
||||
JOCTET _buffer[BUFSIZE], *buffer, temp;
|
||||
simd_bit_buf_type put_buffer; int put_bits;
|
||||
int localbuf = 0;
|
||||
|
||||
if (state->simd) {
|
||||
#if defined __arm__ || defined __aarch64__
|
||||
put_bits = state->cur.free_bits;
|
||||
#else
|
||||
put_bits = SIMD_BIT_BUF_SIZE - state->cur.free_bits;
|
||||
#endif
|
||||
put_buffer = state->cur.put_buffer.simd;
|
||||
} else {
|
||||
put_bits = BIT_BUF_SIZE - state->cur.free_bits;
|
||||
put_buffer = state->cur.put_buffer.c;
|
||||
}
|
||||
|
||||
put_buffer = state->cur.put_buffer;
|
||||
put_bits = state->cur.put_bits;
|
||||
LOAD_BUFFER()
|
||||
|
||||
/* fill any partial byte with ones */
|
||||
PUT_BITS(0x7F, 7)
|
||||
while (put_bits >= 8) EMIT_BYTE()
|
||||
while (put_bits >= 8) {
|
||||
put_bits -= 8;
|
||||
temp = (JOCTET)(put_buffer >> put_bits);
|
||||
EMIT_BYTE(temp)
|
||||
}
|
||||
if (put_bits) {
|
||||
/* fill partial byte with ones */
|
||||
temp = (JOCTET)((put_buffer << (8 - put_bits)) | (0xFF >> put_bits));
|
||||
EMIT_BYTE(temp)
|
||||
}
|
||||
|
||||
state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
|
||||
state->cur.put_bits = 0;
|
||||
if (state->simd) { /* and reset bit buffer to empty */
|
||||
state->cur.put_buffer.simd = 0;
|
||||
#if defined __arm__ || defined __aarch64__
|
||||
state->cur.free_bits = 0;
|
||||
#else
|
||||
state->cur.free_bits = SIMD_BIT_BUF_SIZE;
|
||||
#endif
|
||||
} else {
|
||||
state->cur.put_buffer.c = 0;
|
||||
state->cur.free_bits = BIT_BUF_SIZE;
|
||||
}
|
||||
STORE_BUFFER()
|
||||
|
||||
return TRUE;
|
||||
@@ -480,7 +541,7 @@ encode_one_block_simd(working_state *state, JCOEFPTR block, int last_dc_val,
|
||||
c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
||||
{
|
||||
JOCTET _buffer[BUFSIZE], *buffer;
|
||||
size_t bytes, bytestocopy; int localbuf = 0;
|
||||
int localbuf = 0;
|
||||
|
||||
LOAD_BUFFER()
|
||||
|
||||
@@ -496,53 +557,41 @@ LOCAL(boolean)
|
||||
encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val,
|
||||
c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
||||
{
|
||||
int temp, temp2, temp3;
|
||||
int nbits;
|
||||
int r, code, size;
|
||||
int temp, nbits, free_bits;
|
||||
bit_buf_type put_buffer;
|
||||
JOCTET _buffer[BUFSIZE], *buffer;
|
||||
bit_buf_type put_buffer; int put_bits;
|
||||
int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
|
||||
size_t bytes, bytestocopy; int localbuf = 0;
|
||||
int localbuf = 0;
|
||||
|
||||
put_buffer = state->cur.put_buffer;
|
||||
put_bits = state->cur.put_bits;
|
||||
free_bits = state->cur.free_bits;
|
||||
put_buffer = state->cur.put_buffer.c;
|
||||
LOAD_BUFFER()
|
||||
|
||||
/* Encode the DC coefficient difference per section F.1.2.1 */
|
||||
|
||||
temp = temp2 = block[0] - last_dc_val;
|
||||
temp = block[0] - last_dc_val;
|
||||
|
||||
/* This is a well-known technique for obtaining the absolute value without a
|
||||
* branch. It is derived from an assembly language technique presented in
|
||||
* "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
|
||||
* Agner Fog.
|
||||
* Agner Fog. This code assumes we are on a two's complement machine.
|
||||
*/
|
||||
temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
|
||||
temp ^= temp3;
|
||||
temp -= temp3;
|
||||
|
||||
/* For a negative input, want temp2 = bitwise complement of abs(input) */
|
||||
/* This code assumes we are on a two's complement machine */
|
||||
temp2 += temp3;
|
||||
nbits = temp >> (CHAR_BIT * sizeof(int) - 1);
|
||||
temp += nbits;
|
||||
nbits ^= temp;
|
||||
|
||||
/* Find the number of bits needed for the magnitude of the coefficient */
|
||||
nbits = JPEG_NBITS(temp);
|
||||
nbits = JPEG_NBITS(nbits);
|
||||
|
||||
/* Emit the Huffman-coded symbol for the number of bits */
|
||||
code = dctbl->ehufco[nbits];
|
||||
size = dctbl->ehufsi[nbits];
|
||||
EMIT_BITS(code, size)
|
||||
|
||||
/* Mask off any extra bits in code */
|
||||
temp2 &= (((JLONG)1) << nbits) - 1;
|
||||
|
||||
/* Emit that number of bits of the value, if positive, */
|
||||
/* or the complement of its magnitude, if negative. */
|
||||
EMIT_BITS(temp2, nbits)
|
||||
/* Emit the Huffman-coded symbol for the number of bits.
|
||||
* Emit that number of bits of the value, if positive,
|
||||
* or the complement of its magnitude, if negative.
|
||||
*/
|
||||
PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits])
|
||||
|
||||
/* Encode the AC coefficients per section F.1.2.2 */
|
||||
|
||||
r = 0; /* r = run length of zeros */
|
||||
{
|
||||
int r = 0; /* r = run length of zeros */
|
||||
|
||||
/* Manually unroll the k loop to eliminate the counter variable. This
|
||||
* improves performance greatly on systems with a limited number of
|
||||
@@ -550,51 +599,46 @@ encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val,
|
||||
*/
|
||||
#define kloop(jpeg_natural_order_of_k) { \
|
||||
if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
|
||||
r++; \
|
||||
r += 16; \
|
||||
} else { \
|
||||
temp2 = temp; \
|
||||
/* Branch-less absolute value, bitwise complement, etc., same as above */ \
|
||||
temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
|
||||
temp ^= temp3; \
|
||||
temp -= temp3; \
|
||||
temp2 += temp3; \
|
||||
nbits = JPEG_NBITS_NONZERO(temp); \
|
||||
nbits = temp >> (CHAR_BIT * sizeof(int) - 1); \
|
||||
temp += nbits; \
|
||||
nbits ^= temp; \
|
||||
nbits = JPEG_NBITS_NONZERO(nbits); \
|
||||
/* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
|
||||
while (r > 15) { \
|
||||
EMIT_BITS(code_0xf0, size_0xf0) \
|
||||
r -= 16; \
|
||||
while (r >= 16 * 16) { \
|
||||
r -= 16 * 16; \
|
||||
PUT_BITS(actbl->ehufco[0xf0], actbl->ehufsi[0xf0]) \
|
||||
} \
|
||||
/* Emit Huffman symbol for run length / number of bits */ \
|
||||
temp3 = (r << 4) + nbits; \
|
||||
code = actbl->ehufco[temp3]; \
|
||||
size = actbl->ehufsi[temp3]; \
|
||||
EMIT_CODE(code, size) \
|
||||
r += nbits; \
|
||||
PUT_CODE(actbl->ehufco[r], actbl->ehufsi[r]) \
|
||||
r = 0; \
|
||||
} \
|
||||
}
|
||||
|
||||
/* One iteration for each value in jpeg_natural_order[] */
|
||||
kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3);
|
||||
kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18);
|
||||
kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26);
|
||||
kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27);
|
||||
kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21);
|
||||
kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57);
|
||||
kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15);
|
||||
kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58);
|
||||
kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39);
|
||||
kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47);
|
||||
kloop(55); kloop(62); kloop(63);
|
||||
/* One iteration for each value in jpeg_natural_order[] */
|
||||
kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3);
|
||||
kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18);
|
||||
kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26);
|
||||
kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27);
|
||||
kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21);
|
||||
kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57);
|
||||
kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15);
|
||||
kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58);
|
||||
kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39);
|
||||
kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47);
|
||||
kloop(55); kloop(62); kloop(63);
|
||||
|
||||
/* If the last coef(s) were zero, emit an end-of-block code */
|
||||
if (r > 0) {
|
||||
code = actbl->ehufco[0];
|
||||
size = actbl->ehufsi[0];
|
||||
EMIT_BITS(code, size)
|
||||
/* If the last coef(s) were zero, emit an end-of-block code */
|
||||
if (r > 0) {
|
||||
PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
|
||||
}
|
||||
}
|
||||
|
||||
state->cur.put_buffer = put_buffer;
|
||||
state->cur.put_bits = put_bits;
|
||||
state->cur.put_buffer.c = put_buffer;
|
||||
state->cur.free_bits = free_bits;
|
||||
STORE_BUFFER()
|
||||
|
||||
return TRUE;
|
||||
@@ -643,6 +687,7 @@ encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
state.free_in_buffer = cinfo->dest->free_in_buffer;
|
||||
state.cur = entropy->saved;
|
||||
state.cinfo = cinfo;
|
||||
state.simd = entropy->simd;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
@@ -712,6 +757,7 @@ finish_pass_huff(j_compress_ptr cinfo)
|
||||
state.free_in_buffer = cinfo->dest->free_in_buffer;
|
||||
state.cur = entropy->saved;
|
||||
state.cinfo = cinfo;
|
||||
state.simd = entropy->simd;
|
||||
|
||||
/* Flush out the last data */
|
||||
if (!flush_bits(&state))
|
||||
|
||||
Reference in New Issue
Block a user