Compare commits

...

54 Commits

Author SHA1 Message Date
comfyanonymous
93292bc450 ComfyUI version 0.3.29 2025-04-17 14:45:01 -04:00
Christian Byrne
05d5a75cdc Update frontend to 1.16 (Install templates as pip package) (#7623)
* install templates as pip package

* Update requirements.txt

* bump templates version to include hidream

---------

Co-authored-by: Chenlei Hu <hcl@comfy.org>
2025-04-17 14:25:33 -04:00
comfyanonymous
eba7a25e7a Add WanFirstLastFrameToVideo node to use the new model. 2025-04-17 13:23:22 -04:00
comfyanonymous
dbcfd092a2 Set default context_img_len to 257 2025-04-17 12:42:34 -04:00
comfyanonymous
c14429940f Support loading WAN FLF model. 2025-04-17 12:04:48 -04:00
comfyanonymous
0d720e4367 Don't hardcode length of context_img in wan code. 2025-04-17 06:25:39 -04:00
comfyanonymous
1fc00ba4b6 Make hidream work with any latent resolution. 2025-04-16 18:34:14 -04:00
comfyanonymous
9899d187b1 Limit T5 to 128 tokens for HiDream: #7620 2025-04-16 18:07:55 -04:00
comfyanonymous
f00f340a56 Reuse code from flux model. 2025-04-16 17:43:55 -04:00
Chenlei Hu
cce1d9145e [Type] Mark input options NotRequired (#7614) 2025-04-16 15:41:00 -04:00
comfyanonymous
b4dc03ad76 Fix issue on old torch. 2025-04-16 04:53:56 -04:00
comfyanonymous
9ad792f927 Basic support for hidream i1 model. 2025-04-15 17:35:05 -04:00
comfyanonymous
6fc5dbd52a Cleanup. 2025-04-15 12:13:28 -04:00
comfyanonymous
3e8155f7a3 More flexible long clip support.
Add clip g long clip support.

Text encoder refactor.

Support llama models with different vocab sizes.
2025-04-15 10:32:21 -04:00
comfyanonymous
8a438115fb add RMSNorm to comfy.ops 2025-04-14 18:00:33 -04:00
comfyanonymous
a14c2fc356 ComfyUI version v0.3.28 2025-04-13 12:21:12 -07:00
JNP
9ee6ca99d8 add_optimalsteps (#7584)
Co-authored-by: bebebe666 <jianningpei@tencent.com>
2025-04-12 20:33:36 -04:00
comfyanonymous
bb495cc9b8 Print python version in log. 2025-04-12 18:58:34 -04:00
chaObserv
e51d9ba5fc Add SEEDS (stage 2 & 3 DP) sampler (#7580)
* Add seeds stage 2 & 3 (DP) sampler

* Change the name to SEEDS in comment
2025-04-12 18:36:08 -04:00
Christian Byrne
c87a06f934 Update filter_files_content_types to support filtering 3d models (#7572)
* support 3d model filtering

* fix lint error: blank line contains whitespace

* add model extensions to test runner mimetype cache manually

* use unittest.mock.patch

* remove mtl file from testcase (actually plaintext support file)
2025-04-12 18:30:39 -04:00
catboxanon
1714a4c158 Add CublasOps support (#7574)
* CublasOps support

* Guard CublasOps behind --fast arg
2025-04-12 18:29:15 -04:00
Christian Byrne
73ecb75a3d filter image files in load image dropdown (#7573) 2025-04-12 18:27:59 -04:00
comfyanonymous
22ad513c72 Refactor node cache code to more easily add other types of cache. 2025-04-11 07:16:52 -04:00
Chargeuk
ed945a1790 Dependency Aware Node Caching for low RAM/VRAM machines (#7509)
* add dependency aware cache that removed a cached node as soon as all of its decendents have executed. This allows users with lower RAM to run workflows they would otherwise not be able to run. The downside is that every workflow will fully run each time even if no nodes have changed.

* remove test code

* tidy code
2025-04-11 06:55:51 -04:00
Chenlei Hu
f9207c6936 Update frontend to 1.15 (#7564) 2025-04-11 06:46:20 -04:00
Christian Byrne
8ad7477647 dont cache templates index (#7569) 2025-04-11 06:06:53 -04:00
Chenlei Hu
98bdca4cb2 Deprecate InputTypeOptions.defaultInput (#7551)
* Deprecate InputTypeOptions.defaultInput

* nit

* nit
2025-04-10 06:57:06 -04:00
comfyanonymous
a26da20a76 Fix custom nodes not importing when path contains a dot. 2025-04-10 03:37:52 -04:00
Jedrzej Kosinski
e346d8584e Add prepare_sampling wrapper allowing custom nodes to more accurately report noise_shape (#7500) 2025-04-09 09:43:35 -04:00
comfyanonymous
ab31b64412 Make "surface net" the default in the VoxelToMesh node. 2025-04-09 09:42:08 -04:00
thot experiment
fe29739c68 add VoxelToMesh node w/ surfacenet meshing (#7446)
* add VoxelToMesh node w/ surfacenet meshing

could delete the VoxelToMeshBasic node now probably?

* fix ruff
2025-04-09 09:41:03 -04:00
Chenlei Hu
e8345a9b7b Align /prompt response schema (#7423) 2025-04-09 09:10:36 -04:00
comfyanonymous
8c6b9f4481 Prevent custom nodes from accidentally overwriting global modules. (#7167)
* Prevent custom nodes from accidentally overwriting global modules.

* Improve.
2025-04-09 09:08:57 -04:00
Christian Byrne
cc7e023a4a handle palette mode in loadimage node (#7539) 2025-04-09 09:07:07 -04:00
comfyanonymous
2f7d8159c3 Show the user an error when the controlnet file is invalid. 2025-04-08 08:11:59 -04:00
comfyanonymous
70d7242e57 Support the wan fun reward loras. 2025-04-07 05:01:47 -04:00
comfyanonymous
49b732afd5 Show a proper error to the user when a vision model file is invalid. 2025-04-06 22:43:56 -04:00
comfyanonymous
3bfe4e5276 Support 512 siglip model. 2025-04-05 07:01:01 -04:00
Raphael Walker
89e4ea0175 Add activations_shape info in UNet models (#7482)
* Add activations_shape info in UNet models

* activations_shape should be a list
2025-04-04 21:27:54 -04:00
comfyanonymous
3a100b9a55 Disable partial offloading of audio VAE. 2025-04-04 21:24:56 -04:00
comfyanonymous
721253cb05 Fix problem. 2025-04-03 20:57:59 -04:00
comfyanonymous
3d2e3a6f29 Fix alpha image issue in more nodes. 2025-04-02 19:32:49 -04:00
BiologicalExplosion
2222cf67fd MLU memory optimization (#7470)
Co-authored-by: huzhan <huzhan@cambricon.com>
2025-04-02 19:24:04 -04:00
comfyanonymous
ab5413351e Fix comment.
This function does not support quads.
2025-04-01 14:09:31 -04:00
Laurent Erignoux
2b71aab299 User missing (#7439)
* Ensuring a 401 error is returned when user data is not found in multi-user context.

* Returning a 401 error when provided comfy-user does not exists on server side.
2025-04-01 13:53:52 -04:00
BVH
301e26b131 Add option to store TE in bf16 (#7461) 2025-04-01 13:48:53 -04:00
comfyanonymous
548457bac4 Fix alpha channel mismatch on destination in ImageCompositeMasked 2025-03-31 20:59:12 -04:00
comfyanonymous
0b4584c741 Fix latent composite node not working when source has alpha. 2025-03-30 21:47:05 -04:00
comfyanonymous
a3100c8452 Remove useless code. 2025-03-29 20:12:56 -04:00
Michael Kupchick
832fc02330 ltxv: fix preprocessing exception when compression is 0. (#7431) 2025-03-29 20:03:02 -04:00
comfyanonymous
2d17d8910c Don't error if wan concat image has extra channels. 2025-03-28 08:49:29 -04:00
Chenlei Hu
a40fcfc2d5 Update frontend to 1.14.6 (#7416)
Cherry-pick the fix: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3252
2025-03-28 02:27:01 -04:00
comfyanonymous
0a1f8869c9 Add WanFunInpaintToVideo node for the Wan fun inpaint models. 2025-03-27 11:13:27 -04:00
comfyanonymous
3661c833bc Support the WAN 2.1 fun control models.
Use the new WanFunControlToVideo node.
2025-03-26 19:54:54 -04:00
58 changed files with 2227 additions and 188 deletions

View File

@@ -9,8 +9,14 @@ class AppSettings():
self.user_manager = user_manager
def get_settings(self, request):
try:
file = self.user_manager.get_request_user_filepath(
request, "comfy.settings.json")
request,
"comfy.settings.json"
)
except KeyError as e:
logging.error("User settings not found.")
raise web.HTTPUnauthorized() from e
if os.path.isfile(file):
try:
with open(file) as f:

View File

@@ -184,6 +184,27 @@ comfyui-frontend-package is not installed.
)
sys.exit(-1)
@classmethod
def templates_path(cls) -> str:
try:
import comfyui_workflow_templates
return str(
importlib.resources.files(comfyui_workflow_templates) / "templates"
)
except ImportError:
logging.error(
f"""
********** ERROR ***********
comfyui-workflow-templates is not installed.
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
)
@classmethod
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
"""

View File

@@ -79,6 +79,7 @@ fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Stor
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
fpte_group.add_argument("--bf16-text-enc", action="store_true", help="Store text encoder weights in bf16.")
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
@@ -100,6 +101,7 @@ parser.add_argument("--preview-size", type=int, default=512, help="Sets the maxi
cache_group = parser.add_mutually_exclusive_group()
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
@@ -134,8 +136,9 @@ parser.add_argument("--deterministic", action="store_true", help="Make pytorch u
class PerformanceFeature(enum.Enum):
Fp16Accumulation = "fp16_accumulation"
Fp8MatrixMultiplication = "fp8_matrix_mult"
CublasOps = "cublas_ops"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult")
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")

View File

@@ -110,9 +110,13 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
embed_shape = sd["vision_model.embeddings.position_embedding.weight"].shape[0]
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
if embed_shape == 729:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
elif embed_shape == 1024:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
elif embed_shape == 577:
if "multi_modal_projector.linear_1.bias" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
else:

View File

@@ -0,0 +1,13 @@
{
"num_channels": 3,
"hidden_act": "gelu_pytorch_tanh",
"hidden_size": 1152,
"image_size": 512,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 16,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5]
}

View File

@@ -99,55 +99,59 @@ class InputTypeOptions(TypedDict):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/datatypes
"""
default: bool | str | float | int | list | tuple
default: NotRequired[bool | str | float | int | list | tuple]
"""The default value of the widget"""
defaultInput: bool
"""Defaults to an input slot rather than a widget"""
forceInput: bool
"""`defaultInput` and also don't allow converting to a widget"""
lazy: bool
defaultInput: NotRequired[bool]
"""@deprecated in v1.16 frontend. v1.16 frontend allows input socket and widget to co-exist.
- defaultInput on required inputs should be dropped.
- defaultInput on optional inputs should be replaced with forceInput.
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3364
"""
forceInput: NotRequired[bool]
"""Forces the input to be an input slot rather than a widget even a widget is available for the input type."""
lazy: NotRequired[bool]
"""Declares that this input uses lazy evaluation"""
rawLink: bool
rawLink: NotRequired[bool]
"""When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
tooltip: str
tooltip: NotRequired[str]
"""Tooltip for the input (or widget), shown on pointer hover"""
# class InputTypeNumber(InputTypeOptions):
# default: float | int
min: float
min: NotRequired[float]
"""The minimum value of a number (``FLOAT`` | ``INT``)"""
max: float
max: NotRequired[float]
"""The maximum value of a number (``FLOAT`` | ``INT``)"""
step: float
step: NotRequired[float]
"""The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)"""
round: float
round: NotRequired[float]
"""Floats are rounded by this value (``FLOAT``)"""
# class InputTypeBoolean(InputTypeOptions):
# default: bool
label_on: str
label_on: NotRequired[str]
"""The label to use in the UI when the bool is True (``BOOLEAN``)"""
label_off: str
label_off: NotRequired[str]
"""The label to use in the UI when the bool is False (``BOOLEAN``)"""
# class InputTypeString(InputTypeOptions):
# default: str
multiline: bool
multiline: NotRequired[bool]
"""Use a multiline text box (``STRING``)"""
placeholder: str
placeholder: NotRequired[str]
"""Placeholder text to display in the UI when empty (``STRING``)"""
# Deprecated:
# defaultVal: str
dynamicPrompts: bool
dynamicPrompts: NotRequired[bool]
"""Causes the front-end to evaluate dynamic prompts (``STRING``)"""
# class InputTypeCombo(InputTypeOptions):
image_upload: bool
image_upload: NotRequired[bool]
"""Specifies whether the input should have an image upload button and image preview attached to it. Requires that the input's name is `image`."""
image_folder: Literal["input", "output", "temp"]
image_folder: NotRequired[Literal["input", "output", "temp"]]
"""Specifies which folder to get preview images from if the input has the ``image_upload`` flag.
"""
remote: RemoteInputOptions
remote: NotRequired[RemoteInputOptions]
"""Specifies the configuration for a remote input.
Available after ComfyUI frontend v1.9.7
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2422"""
control_after_generate: bool
control_after_generate: NotRequired[bool]
"""Specifies whether a control widget should be added to the input, adding options to automatically change the value after each prompt is queued. Currently only used for INT and COMBO types."""
options: NotRequired[list[str | int | float]]
"""COMBO type only. Specifies the selectable options for the combo widget.
@@ -165,15 +169,15 @@ class InputTypeOptions(TypedDict):
class HiddenInputTypeDict(TypedDict):
"""Provides type hinting for the hidden entry of node INPUT_TYPES."""
node_id: Literal["UNIQUE_ID"]
node_id: NotRequired[Literal["UNIQUE_ID"]]
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
unique_id: Literal["UNIQUE_ID"]
unique_id: NotRequired[Literal["UNIQUE_ID"]]
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
prompt: Literal["PROMPT"]
prompt: NotRequired[Literal["PROMPT"]]
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
extra_pnginfo: Literal["EXTRA_PNGINFO"]
extra_pnginfo: NotRequired[Literal["EXTRA_PNGINFO"]]
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
dynprompt: Literal["DYNPROMPT"]
dynprompt: NotRequired[Literal["DYNPROMPT"]]
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
@@ -183,11 +187,11 @@ class InputTypeDict(TypedDict):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs
"""
required: dict[str, tuple[IO, InputTypeOptions]]
required: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
"""Describes all inputs that must be connected for the node to execute."""
optional: dict[str, tuple[IO, InputTypeOptions]]
optional: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
"""Describes inputs which do not need to be connected."""
hidden: HiddenInputTypeDict
hidden: NotRequired[HiddenInputTypeDict]
"""Offers advanced functionality and server-client communication.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs

View File

@@ -1422,3 +1422,101 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (sigmas[i + 1] ** 2 - sigmas[i] ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
old_denoised = denoised
return x
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
'''
SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 2
Arxiv: https://arxiv.org/abs/2305.14267
'''
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
h = t_next - t
h_eta = h * (eta + 1)
s = t + r * h
fac = 1 / (2 * r)
sigma_s = s.neg().exp()
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
noise_coeff_2 = ((-2 * r * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s), noise_sampler(sigma_s, sigmas[i + 1])
# Step 1
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s * s_in, **extra_args)
# Step 2
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = (coeff_2 + 1) * x - coeff_2 * denoised_d
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
return x
@torch.no_grad()
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
'''
SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 3
Arxiv: https://arxiv.org/abs/2305.14267
'''
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
h = t_next - t
h_eta = h * (eta + 1)
s_1 = t + r_1 * h
s_2 = t + r_2 * h
sigma_s_1, sigma_s_2 = s_1.neg().exp(), s_2.neg().exp()
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
noise_coeff_2 = ((-2 * r_1 * h * eta).expm1() - (-2 * r_2 * h * eta).expm1()).sqrt()
noise_coeff_3 = ((-2 * r_2 * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
# Step 1
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
x_3 = (coeff_2 + 1) * x - coeff_2 * denoised + (r_2 / r_1) * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
if inject_noise:
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 3
x = (coeff_3 + 1) * x - coeff_3 * denoised + (1. / r_2) * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
return x

View File

@@ -1,5 +1,6 @@
import torch
import comfy.ops
import comfy.rmsnorm
def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
if padding_mode == "circular" and (torch.jit.is_tracing() or torch.jit.is_scripting()):
@@ -11,20 +12,5 @@ def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
return torch.nn.functional.pad(img, pad, mode=padding_mode)
try:
rms_norm_torch = torch.nn.functional.rms_norm
except:
rms_norm_torch = None
def rms_norm(x, weight=None, eps=1e-6):
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
if weight is None:
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
else:
return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
else:
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
if weight is None:
return r
else:
return r * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)
rms_norm = comfy.rmsnorm.rms_norm

799
comfy/ldm/hidream/model.py Normal file
View File

@@ -0,0 +1,799 @@
from typing import Optional, Tuple, List
import torch
import torch.nn as nn
import einops
from einops import repeat
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
import torch.nn.functional as F
from comfy.ldm.flux.math import apply_rope, rope
from comfy.ldm.flux.layers import LastLayer
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
import comfy.ldm.common_dit
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py
class EmbedND(nn.Module):
def __init__(self, theta: int, axes_dim: List[int]):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(2)
class PatchEmbed(nn.Module):
def __init__(
self,
patch_size=2,
in_channels=4,
out_channels=1024,
dtype=None, device=None, operations=None
):
super().__init__()
self.patch_size = patch_size
self.out_channels = out_channels
self.proj = operations.Linear(in_channels * patch_size * patch_size, out_channels, bias=True, dtype=dtype, device=device)
def forward(self, latent):
latent = self.proj(latent)
return latent
class PooledEmbed(nn.Module):
def __init__(self, text_emb_dim, hidden_size, dtype=None, device=None, operations=None):
super().__init__()
self.pooled_embedder = TimestepEmbedding(in_channels=text_emb_dim, time_embed_dim=hidden_size, dtype=dtype, device=device, operations=operations)
def forward(self, pooled_embed):
return self.pooled_embedder(pooled_embed)
class TimestepEmbed(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
super().__init__()
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size, dtype=dtype, device=device, operations=operations)
def forward(self, timesteps, wdtype):
t_emb = self.time_proj(timesteps).to(dtype=wdtype)
t_emb = self.timestep_embedder(t_emb)
return t_emb
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2])
class HiDreamAttnProcessor_flashattn:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __call__(
self,
attn,
image_tokens: torch.FloatTensor,
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
*args,
**kwargs,
) -> torch.FloatTensor:
dtype = image_tokens.dtype
batch_size = image_tokens.shape[0]
query_i = attn.q_rms_norm(attn.to_q(image_tokens)).to(dtype=dtype)
key_i = attn.k_rms_norm(attn.to_k(image_tokens)).to(dtype=dtype)
value_i = attn.to_v(image_tokens)
inner_dim = key_i.shape[-1]
head_dim = inner_dim // attn.heads
query_i = query_i.view(batch_size, -1, attn.heads, head_dim)
key_i = key_i.view(batch_size, -1, attn.heads, head_dim)
value_i = value_i.view(batch_size, -1, attn.heads, head_dim)
if image_tokens_masks is not None:
key_i = key_i * image_tokens_masks.view(batch_size, -1, 1, 1)
if not attn.single:
query_t = attn.q_rms_norm_t(attn.to_q_t(text_tokens)).to(dtype=dtype)
key_t = attn.k_rms_norm_t(attn.to_k_t(text_tokens)).to(dtype=dtype)
value_t = attn.to_v_t(text_tokens)
query_t = query_t.view(batch_size, -1, attn.heads, head_dim)
key_t = key_t.view(batch_size, -1, attn.heads, head_dim)
value_t = value_t.view(batch_size, -1, attn.heads, head_dim)
num_image_tokens = query_i.shape[1]
num_text_tokens = query_t.shape[1]
query = torch.cat([query_i, query_t], dim=1)
key = torch.cat([key_i, key_t], dim=1)
value = torch.cat([value_i, value_t], dim=1)
else:
query = query_i
key = key_i
value = value_i
if query.shape[-1] == rope.shape[-3] * 2:
query, key = apply_rope(query, key, rope)
else:
query_1, query_2 = query.chunk(2, dim=-1)
key_1, key_2 = key.chunk(2, dim=-1)
query_1, key_1 = apply_rope(query_1, key_1, rope)
query = torch.cat([query_1, query_2], dim=-1)
key = torch.cat([key_1, key_2], dim=-1)
hidden_states = attention(query, key, value)
if not attn.single:
hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1)
hidden_states_i = attn.to_out(hidden_states_i)
hidden_states_t = attn.to_out_t(hidden_states_t)
return hidden_states_i, hidden_states_t
else:
hidden_states = attn.to_out(hidden_states)
return hidden_states
class HiDreamAttention(nn.Module):
def __init__(
self,
query_dim: int,
heads: int = 8,
dim_head: int = 64,
upcast_attention: bool = False,
upcast_softmax: bool = False,
scale_qk: bool = True,
eps: float = 1e-5,
processor = None,
out_dim: int = None,
single: bool = False,
dtype=None, device=None, operations=None
):
# super(Attention, self).__init__()
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.query_dim = query_dim
self.upcast_attention = upcast_attention
self.upcast_softmax = upcast_softmax
self.out_dim = out_dim if out_dim is not None else query_dim
self.scale_qk = scale_qk
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
self.heads = out_dim // dim_head if out_dim is not None else heads
self.sliceable_head_dim = heads
self.single = single
linear_cls = operations.Linear
self.linear_cls = linear_cls
self.to_q = linear_cls(query_dim, self.inner_dim, dtype=dtype, device=device)
self.to_k = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
self.to_v = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
self.to_out = linear_cls(self.inner_dim, self.out_dim, dtype=dtype, device=device)
self.q_rms_norm = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
self.k_rms_norm = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
if not single:
self.to_q_t = linear_cls(query_dim, self.inner_dim, dtype=dtype, device=device)
self.to_k_t = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
self.to_v_t = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
self.to_out_t = linear_cls(self.inner_dim, self.out_dim, dtype=dtype, device=device)
self.q_rms_norm_t = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
self.k_rms_norm_t = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
self.processor = processor
def forward(
self,
norm_image_tokens: torch.FloatTensor,
image_tokens_masks: torch.FloatTensor = None,
norm_text_tokens: torch.FloatTensor = None,
rope: torch.FloatTensor = None,
) -> torch.Tensor:
return self.processor(
self,
image_tokens = norm_image_tokens,
image_tokens_masks = image_tokens_masks,
text_tokens = norm_text_tokens,
rope = rope,
)
class FeedForwardSwiGLU(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
dtype=None, device=None, operations=None
):
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * (
(hidden_dim + multiple_of - 1) // multiple_of
)
self.w1 = operations.Linear(dim, hidden_dim, bias=False, dtype=dtype, device=device)
self.w2 = operations.Linear(hidden_dim, dim, bias=False, dtype=dtype, device=device)
self.w3 = operations.Linear(dim, hidden_dim, bias=False, dtype=dtype, device=device)
def forward(self, x):
return self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x))
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
class MoEGate(nn.Module):
def __init__(self, embed_dim, num_routed_experts=4, num_activated_experts=2, aux_loss_alpha=0.01, dtype=None, device=None, operations=None):
super().__init__()
self.top_k = num_activated_experts
self.n_routed_experts = num_routed_experts
self.scoring_func = 'softmax'
self.alpha = aux_loss_alpha
self.seq_aux = False
# topk selection algorithm
self.norm_topk_prob = False
self.gating_dim = embed_dim
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim), dtype=dtype, device=device))
self.reset_parameters()
def reset_parameters(self) -> None:
pass
# import torch.nn.init as init
# init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states):
bsz, seq_len, h = hidden_states.shape
### compute gating score
hidden_states = hidden_states.view(-1, h)
logits = F.linear(hidden_states, comfy.model_management.cast_to(self.weight, dtype=hidden_states.dtype, device=hidden_states.device), None)
if self.scoring_func == 'softmax':
scores = logits.softmax(dim=-1)
else:
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
### select top-k experts
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
### norm gate to sum 1
if self.top_k > 1 and self.norm_topk_prob:
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
topk_weight = topk_weight / denominator
aux_loss = None
return topk_idx, topk_weight, aux_loss
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
class MOEFeedForwardSwiGLU(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
num_routed_experts: int,
num_activated_experts: int,
dtype=None, device=None, operations=None
):
super().__init__()
self.shared_experts = FeedForwardSwiGLU(dim, hidden_dim // 2, dtype=dtype, device=device, operations=operations)
self.experts = nn.ModuleList([FeedForwardSwiGLU(dim, hidden_dim, dtype=dtype, device=device, operations=operations) for i in range(num_routed_experts)])
self.gate = MoEGate(
embed_dim = dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
dtype=dtype, device=device, operations=operations
)
self.num_activated_experts = num_activated_experts
def forward(self, x):
wtype = x.dtype
identity = x
orig_shape = x.shape
topk_idx, topk_weight, aux_loss = self.gate(x)
x = x.view(-1, x.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if True: # self.training: # TODO: check which branch performs faster
x = x.repeat_interleave(self.num_activated_experts, dim=0)
y = torch.empty_like(x, dtype=wtype)
for i, expert in enumerate(self.experts):
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(dtype=wtype)
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
y = y.view(*orig_shape).to(dtype=wtype)
#y = AddAuxiliaryLoss.apply(y, aux_loss)
else:
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
y = y + self.shared_experts(identity)
return y
@torch.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
expert_cache = torch.zeros_like(x)
idxs = flat_expert_indices.argsort()
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
token_idxs = idxs // self.num_activated_experts
for i, end_idx in enumerate(tokens_per_expert):
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
if start_idx == end_idx:
continue
expert = self.experts[i]
exp_token_idx = token_idxs[start_idx:end_idx]
expert_tokens = x[exp_token_idx]
expert_out = expert(expert_tokens)
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
# for fp16 and other dtype
expert_cache = expert_cache.to(expert_out.dtype)
expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum')
return expert_cache
class TextProjection(nn.Module):
def __init__(self, in_features, hidden_size, dtype=None, device=None, operations=None):
super().__init__()
self.linear = operations.Linear(in_features=in_features, out_features=hidden_size, bias=False, dtype=dtype, device=device)
def forward(self, caption):
hidden_states = self.linear(caption)
return hidden_states
class BlockType:
TransformerBlock = 1
SingleTransformerBlock = 2
class HiDreamImageSingleTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
num_routed_experts: int = 4,
num_activated_experts: int = 2,
dtype=None, device=None, operations=None
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device)
)
# 1. Attention
self.norm1_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
self.attn1 = HiDreamAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
processor = HiDreamAttnProcessor_flashattn(),
single = True,
dtype=dtype, device=device, operations=operations
)
# 3. Feed-forward
self.norm3_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
if num_routed_experts > 0:
self.ff_i = MOEFeedForwardSwiGLU(
dim = dim,
hidden_dim = 4 * dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
dtype=dtype, device=device, operations=operations
)
else:
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
def forward(
self,
image_tokens: torch.FloatTensor,
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
) -> torch.FloatTensor:
wtype = image_tokens.dtype
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
self.adaLN_modulation(adaln_input)[:,None].chunk(6, dim=-1)
# 1. MM-Attention
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
attn_output_i = self.attn1(
norm_image_tokens,
image_tokens_masks,
rope = rope,
)
image_tokens = gate_msa_i * attn_output_i + image_tokens
# 2. Feed-forward
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens.to(dtype=wtype))
image_tokens = ff_output_i + image_tokens
return image_tokens
class HiDreamImageTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
num_routed_experts: int = 4,
num_activated_experts: int = 2,
dtype=None, device=None, operations=None
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(dim, 12 * dim, bias=True, dtype=dtype, device=device)
)
# nn.init.zeros_(self.adaLN_modulation[1].weight)
# nn.init.zeros_(self.adaLN_modulation[1].bias)
# 1. Attention
self.norm1_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
self.norm1_t = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
self.attn1 = HiDreamAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
processor = HiDreamAttnProcessor_flashattn(),
single = False,
dtype=dtype, device=device, operations=operations
)
# 3. Feed-forward
self.norm3_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
if num_routed_experts > 0:
self.ff_i = MOEFeedForwardSwiGLU(
dim = dim,
hidden_dim = 4 * dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
dtype=dtype, device=device, operations=operations
)
else:
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
self.norm3_t = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
self.ff_t = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
def forward(
self,
image_tokens: torch.FloatTensor,
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
) -> torch.FloatTensor:
wtype = image_tokens.dtype
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
shift_msa_t, scale_msa_t, gate_msa_t, shift_mlp_t, scale_mlp_t, gate_mlp_t = \
self.adaLN_modulation(adaln_input)[:,None].chunk(12, dim=-1)
# 1. MM-Attention
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
norm_text_tokens = self.norm1_t(text_tokens).to(dtype=wtype)
norm_text_tokens = norm_text_tokens * (1 + scale_msa_t) + shift_msa_t
attn_output_i, attn_output_t = self.attn1(
norm_image_tokens,
image_tokens_masks,
norm_text_tokens,
rope = rope,
)
image_tokens = gate_msa_i * attn_output_i + image_tokens
text_tokens = gate_msa_t * attn_output_t + text_tokens
# 2. Feed-forward
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
norm_text_tokens = self.norm3_t(text_tokens).to(dtype=wtype)
norm_text_tokens = norm_text_tokens * (1 + scale_mlp_t) + shift_mlp_t
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens)
ff_output_t = gate_mlp_t * self.ff_t(norm_text_tokens)
image_tokens = ff_output_i + image_tokens
text_tokens = ff_output_t + text_tokens
return image_tokens, text_tokens
class HiDreamImageBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
num_routed_experts: int = 4,
num_activated_experts: int = 2,
block_type: BlockType = BlockType.TransformerBlock,
dtype=None, device=None, operations=None
):
super().__init__()
block_classes = {
BlockType.TransformerBlock: HiDreamImageTransformerBlock,
BlockType.SingleTransformerBlock: HiDreamImageSingleTransformerBlock,
}
self.block = block_classes[block_type](
dim,
num_attention_heads,
attention_head_dim,
num_routed_experts,
num_activated_experts,
dtype=dtype, device=device, operations=operations
)
def forward(
self,
image_tokens: torch.FloatTensor,
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: torch.FloatTensor = None,
rope: torch.FloatTensor = None,
) -> torch.FloatTensor:
return self.block(
image_tokens,
image_tokens_masks,
text_tokens,
adaln_input,
rope,
)
class HiDreamImageTransformer2DModel(nn.Module):
def __init__(
self,
patch_size: Optional[int] = None,
in_channels: int = 64,
out_channels: Optional[int] = None,
num_layers: int = 16,
num_single_layers: int = 32,
attention_head_dim: int = 128,
num_attention_heads: int = 20,
caption_channels: List[int] = None,
text_emb_dim: int = 2048,
num_routed_experts: int = 4,
num_activated_experts: int = 2,
axes_dims_rope: Tuple[int, int] = (32, 32),
max_resolution: Tuple[int, int] = (128, 128),
llama_layers: List[int] = None,
image_model=None,
dtype=None, device=None, operations=None
):
self.patch_size = patch_size
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.num_layers = num_layers
self.num_single_layers = num_single_layers
self.gradient_checkpointing = False
super().__init__()
self.dtype = dtype
self.out_channels = out_channels or in_channels
self.inner_dim = self.num_attention_heads * self.attention_head_dim
self.llama_layers = llama_layers
self.t_embedder = TimestepEmbed(self.inner_dim, dtype=dtype, device=device, operations=operations)
self.p_embedder = PooledEmbed(text_emb_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
self.x_embedder = PatchEmbed(
patch_size = patch_size,
in_channels = in_channels,
out_channels = self.inner_dim,
dtype=dtype, device=device, operations=operations
)
self.pe_embedder = EmbedND(theta=10000, axes_dim=axes_dims_rope)
self.double_stream_blocks = nn.ModuleList(
[
HiDreamImageBlock(
dim = self.inner_dim,
num_attention_heads = self.num_attention_heads,
attention_head_dim = self.attention_head_dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
block_type = BlockType.TransformerBlock,
dtype=dtype, device=device, operations=operations
)
for i in range(self.num_layers)
]
)
self.single_stream_blocks = nn.ModuleList(
[
HiDreamImageBlock(
dim = self.inner_dim,
num_attention_heads = self.num_attention_heads,
attention_head_dim = self.attention_head_dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
block_type = BlockType.SingleTransformerBlock,
dtype=dtype, device=device, operations=operations
)
for i in range(self.num_single_layers)
]
)
self.final_layer = LastLayer(self.inner_dim, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
caption_channels = [caption_channels[1], ] * (num_layers + num_single_layers) + [caption_channels[0], ]
caption_projection = []
for caption_channel in caption_channels:
caption_projection.append(TextProjection(in_features=caption_channel, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations))
self.caption_projection = nn.ModuleList(caption_projection)
self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size)
def expand_timesteps(self, timesteps, batch_size, device):
if not torch.is_tensor(timesteps):
is_mps = device.type == "mps"
if isinstance(timesteps, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(batch_size)
return timesteps
def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]]) -> List[torch.Tensor]:
x_arr = []
for i, img_size in enumerate(img_sizes):
pH, pW = img_size
x_arr.append(
einops.rearrange(x[i, :pH*pW].reshape(1, pH, pW, -1), 'B H W (p1 p2 C) -> B C (H p1) (W p2)',
p1=self.patch_size, p2=self.patch_size)
)
x = torch.cat(x_arr, dim=0)
return x
def patchify(self, x, max_seq, img_sizes=None):
pz2 = self.patch_size * self.patch_size
if isinstance(x, torch.Tensor):
B = x.shape[0]
device = x.device
dtype = x.dtype
else:
B = len(x)
device = x[0].device
dtype = x[0].dtype
x_masks = torch.zeros((B, max_seq), dtype=dtype, device=device)
if img_sizes is not None:
for i, img_size in enumerate(img_sizes):
x_masks[i, 0:img_size[0] * img_size[1]] = 1
x = einops.rearrange(x, 'B C S p -> B S (p C)', p=pz2)
elif isinstance(x, torch.Tensor):
pH, pW = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size
x = einops.rearrange(x, 'B C (H p1) (W p2) -> B (H W) (p1 p2 C)', p1=self.patch_size, p2=self.patch_size)
img_sizes = [[pH, pW]] * B
x_masks = None
else:
raise NotImplementedError
return x, x_masks, img_sizes
def forward(
self,
x: torch.Tensor,
t: torch.Tensor,
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
encoder_hidden_states_llama3=None,
control = None,
transformer_options = {},
) -> torch.Tensor:
bs, c, h, w = x.shape
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
timesteps = t
pooled_embeds = y
T5_encoder_hidden_states = context
img_sizes = None
# spatial forward
batch_size = hidden_states.shape[0]
hidden_states_type = hidden_states.dtype
# 0. time
timesteps = self.expand_timesteps(timesteps, batch_size, hidden_states.device)
timesteps = self.t_embedder(timesteps, hidden_states_type)
p_embedder = self.p_embedder(pooled_embeds)
adaln_input = timesteps + p_embedder
hidden_states, image_tokens_masks, img_sizes = self.patchify(hidden_states, self.max_seq, img_sizes)
if image_tokens_masks is None:
pH, pW = img_sizes[0]
img_ids = torch.zeros(pH, pW, 3, device=hidden_states.device)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH, device=hidden_states.device)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW, device=hidden_states.device)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
hidden_states = self.x_embedder(hidden_states)
# T5_encoder_hidden_states = encoder_hidden_states[0]
encoder_hidden_states = encoder_hidden_states_llama3.movedim(1, 0)
encoder_hidden_states = [encoder_hidden_states[k] for k in self.llama_layers]
if self.caption_projection is not None:
new_encoder_hidden_states = []
for i, enc_hidden_state in enumerate(encoder_hidden_states):
enc_hidden_state = self.caption_projection[i](enc_hidden_state)
enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1])
new_encoder_hidden_states.append(enc_hidden_state)
encoder_hidden_states = new_encoder_hidden_states
T5_encoder_hidden_states = self.caption_projection[-1](T5_encoder_hidden_states)
T5_encoder_hidden_states = T5_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
encoder_hidden_states.append(T5_encoder_hidden_states)
txt_ids = torch.zeros(
batch_size,
encoder_hidden_states[-1].shape[1] + encoder_hidden_states[-2].shape[1] + encoder_hidden_states[0].shape[1],
3,
device=img_ids.device, dtype=img_ids.dtype
)
ids = torch.cat((img_ids, txt_ids), dim=1)
rope = self.pe_embedder(ids)
# 2. Blocks
block_id = 0
initial_encoder_hidden_states = torch.cat([encoder_hidden_states[-1], encoder_hidden_states[-2]], dim=1)
initial_encoder_hidden_states_seq_len = initial_encoder_hidden_states.shape[1]
for bid, block in enumerate(self.double_stream_blocks):
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
cur_encoder_hidden_states = torch.cat([initial_encoder_hidden_states, cur_llama31_encoder_hidden_states], dim=1)
hidden_states, initial_encoder_hidden_states = block(
image_tokens = hidden_states,
image_tokens_masks = image_tokens_masks,
text_tokens = cur_encoder_hidden_states,
adaln_input = adaln_input,
rope = rope,
)
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
block_id += 1
image_tokens_seq_len = hidden_states.shape[1]
hidden_states = torch.cat([hidden_states, initial_encoder_hidden_states], dim=1)
hidden_states_seq_len = hidden_states.shape[1]
if image_tokens_masks is not None:
encoder_attention_mask_ones = torch.ones(
(batch_size, initial_encoder_hidden_states.shape[1] + cur_llama31_encoder_hidden_states.shape[1]),
device=image_tokens_masks.device, dtype=image_tokens_masks.dtype
)
image_tokens_masks = torch.cat([image_tokens_masks, encoder_attention_mask_ones], dim=1)
for bid, block in enumerate(self.single_stream_blocks):
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
hidden_states = torch.cat([hidden_states, cur_llama31_encoder_hidden_states], dim=1)
hidden_states = block(
image_tokens=hidden_states,
image_tokens_masks=image_tokens_masks,
text_tokens=None,
adaln_input=adaln_input,
rope=rope,
)
hidden_states = hidden_states[:, :hidden_states_seq_len]
block_id += 1
hidden_states = hidden_states[:, :image_tokens_seq_len, ...]
output = self.final_layer(hidden_states, adaln_input)
output = self.unpatchify(output, img_sizes)
return -output[:, :, :h, :w]

View File

@@ -847,6 +847,7 @@ class SpatialTransformer(nn.Module):
if not isinstance(context, list):
context = [context] * len(self.transformer_blocks)
b, c, h, w = x.shape
transformer_options["activations_shape"] = list(x.shape)
x_in = x
x = self.norm(x)
if not self.use_linear:
@@ -962,6 +963,7 @@ class SpatialVideoTransformer(SpatialTransformer):
transformer_options={}
) -> torch.Tensor:
_, _, h, w = x.shape
transformer_options["activations_shape"] = list(x.shape)
x_in = x
spatial_context = None
if exists(context):

View File

@@ -83,7 +83,7 @@ class WanSelfAttention(nn.Module):
class WanT2VCrossAttention(WanSelfAttention):
def forward(self, x, context):
def forward(self, x, context, **kwargs):
r"""
Args:
x(Tensor): Shape [B, L1, C]
@@ -116,14 +116,14 @@ class WanI2VCrossAttention(WanSelfAttention):
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.norm_k_img = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, context):
def forward(self, x, context, context_img_len):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
"""
context_img = context[:, :257]
context = context[:, 257:]
context_img = context[:, :context_img_len]
context = context[:, context_img_len:]
# compute query, key, value
q = self.norm_q(self.q(x))
@@ -193,6 +193,7 @@ class WanAttentionBlock(nn.Module):
e,
freqs,
context,
context_img_len=257,
):
r"""
Args:
@@ -213,7 +214,7 @@ class WanAttentionBlock(nn.Module):
x = x + y * e[2]
# cross-attention & ffn
x = x + self.cross_attn(self.norm3(x), context)
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len)
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
x = x + y * e[5]
return x
@@ -250,7 +251,7 @@ class Head(nn.Module):
class MLPProj(torch.nn.Module):
def __init__(self, in_dim, out_dim, operation_settings={}):
def __init__(self, in_dim, out_dim, flf_pos_embed_token_number=None, operation_settings={}):
super().__init__()
self.proj = torch.nn.Sequential(
@@ -258,7 +259,15 @@ class MLPProj(torch.nn.Module):
torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
if flf_pos_embed_token_number is not None:
self.emb_pos = nn.Parameter(torch.empty((1, flf_pos_embed_token_number, in_dim), device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
else:
self.emb_pos = None
def forward(self, image_embeds):
if self.emb_pos is not None:
image_embeds = image_embeds[:, :self.emb_pos.shape[1]] + comfy.model_management.cast_to(self.emb_pos[:, :image_embeds.shape[1]], dtype=image_embeds.dtype, device=image_embeds.device)
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
@@ -284,6 +293,7 @@ class WanModel(torch.nn.Module):
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
image_model=None,
device=None,
dtype=None,
@@ -373,7 +383,7 @@ class WanModel(torch.nn.Module):
self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)])
if model_type == 'i2v':
self.img_emb = MLPProj(1280, dim, operation_settings=operation_settings)
self.img_emb = MLPProj(1280, dim, flf_pos_embed_token_number=flf_pos_embed_token_number, operation_settings=operation_settings)
else:
self.img_emb = None
@@ -420,9 +430,12 @@ class WanModel(torch.nn.Module):
# context
context = self.text_embedding(context)
if clip_fea is not None and self.img_emb is not None:
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
@@ -430,12 +443,12 @@ class WanModel(torch.nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context)
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
# head
x = self.head(x, e)

View File

@@ -1,4 +1,5 @@
import torch
import comfy.utils
def convert_lora_bfl_control(sd): #BFL loras for Flux
@@ -11,7 +12,13 @@ def convert_lora_bfl_control(sd): #BFL loras for Flux
return sd_out
def convert_lora_wan_fun(sd): #Wan Fun loras
return comfy.utils.state_dict_prefix_replace(sd, {"lora_unet__": "lora_unet_"})
def convert_lora(sd):
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd:
return convert_lora_bfl_control(sd)
if "lora_unet__blocks_0_cross_attn_k.lora_down.weight" in sd:
return convert_lora_wan_fun(sd)
return sd

View File

@@ -37,6 +37,7 @@ import comfy.ldm.cosmos.model
import comfy.ldm.lumina.model
import comfy.ldm.wan.model
import comfy.ldm.hunyuan3d.model
import comfy.ldm.hidream.model
import comfy.model_management
import comfy.patcher_extension
@@ -992,30 +993,40 @@ class WAN21(BaseModel):
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
if self.diffusion_model.patch_embedding.weight.shape[1] == noise.shape[1]:
extra_channels = self.diffusion_model.patch_embedding.weight.shape[1] - noise.shape[1]
if extra_channels == 0:
return None
image = kwargs.get("concat_latent_image", None)
device = kwargs["device"]
if image is None:
image = torch.zeros_like(noise)
shape_image = list(noise.shape)
shape_image[1] = extra_channels
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
image = self.process_latent_in(image)
for i in range(0, image.shape[1], 16):
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
image = utils.resize_to_batch_size(image, noise.shape[0])
if not self.image_to_video:
if not self.image_to_video or extra_channels == image.shape[1]:
return image
if image.shape[1] > (extra_channels - 4):
image = image[:, :(extra_channels - 4)]
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None:
mask = torch.zeros_like(noise)[:, :4]
else:
mask = 1.0 - torch.mean(mask, dim=1, keepdim=True)
if mask.shape[1] != 4:
mask = torch.mean(mask, dim=1, keepdim=True)
mask = 1.0 - mask
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
if mask.shape[-3] < noise.shape[-3]:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
if mask.shape[1] == 1:
mask = mask.repeat(1, 4, 1, 1, 1)
mask = utils.resize_to_batch_size(mask, noise.shape[0])
@@ -1046,3 +1057,20 @@ class Hunyuan3Dv2(BaseModel):
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class HiDream(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hidream.model.HiDreamImageTransformer2DModel)
def encode_adm(self, **kwargs):
return kwargs["pooled_output"]
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_llama3 = kwargs.get("conditioning_llama3", None)
if conditioning_llama3 is not None:
out['encoder_hidden_states_llama3'] = comfy.conds.CONDRegular(conditioning_llama3)
return out

View File

@@ -321,6 +321,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["model_type"] = "i2v"
else:
dit_config["model_type"] = "t2v"
flf_weight = state_dict.get('{}img_emb.emb_pos'.format(key_prefix))
if flf_weight is not None:
dit_config["flf_pos_embed_token_number"] = flf_weight.shape[1]
return dit_config
if '{}latent_in.weight'.format(key_prefix) in state_dict_keys: # Hunyuan 3D
@@ -338,6 +341,25 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
if '{}caption_projection.0.linear.weight'.format(key_prefix) in state_dict_keys: # HiDream
dit_config = {}
dit_config["image_model"] = "hidream"
dit_config["attention_head_dim"] = 128
dit_config["axes_dims_rope"] = [64, 32, 32]
dit_config["caption_channels"] = [4096, 4096]
dit_config["max_resolution"] = [128, 128]
dit_config["in_channels"] = 16
dit_config["llama_layers"] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31]
dit_config["num_attention_heads"] = 20
dit_config["num_routed_experts"] = 4
dit_config["num_activated_experts"] = 2
dit_config["num_layers"] = 16
dit_config["num_single_layers"] = 32
dit_config["out_channels"] = 16
dit_config["patch_size"] = 2
dit_config["text_emb_dim"] = 2048
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None

View File

@@ -823,6 +823,8 @@ def text_encoder_dtype(device=None):
return torch.float8_e5m2
elif args.fp16_text_enc:
return torch.float16
elif args.bf16_text_enc:
return torch.bfloat16
elif args.fp32_text_enc:
return torch.float32
@@ -1235,6 +1237,8 @@ def soft_empty_cache(force=False):
torch.xpu.empty_cache()
elif is_ascend_npu():
torch.npu.empty_cache()
elif is_mlu():
torch.mlu.empty_cache()
elif torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()

View File

@@ -21,6 +21,7 @@ import logging
import comfy.model_management
from comfy.cli_args import args, PerformanceFeature
import comfy.float
import comfy.rmsnorm
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
@@ -146,6 +147,25 @@ class disable_weight_init:
else:
return super().forward(*args, **kwargs)
class RMSNorm(comfy.rmsnorm.RMSNorm, CastWeightBiasOp):
def reset_parameters(self):
self.bias = None
return None
def forward_comfy_cast_weights(self, input):
if self.weight is not None:
weight, bias = cast_bias_weight(self, input)
else:
weight = None
return comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
# return torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
def reset_parameters(self):
return None
@@ -243,6 +263,9 @@ class manual_cast(disable_weight_init):
class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
comfy_cast_weights = True
class RMSNorm(disable_weight_init.RMSNorm):
comfy_cast_weights = True
class Embedding(disable_weight_init.Embedding):
comfy_cast_weights = True
@@ -357,6 +380,25 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
return scaled_fp8_op
CUBLAS_IS_AVAILABLE = False
try:
from cublas_ops import CublasLinear
CUBLAS_IS_AVAILABLE = True
except ImportError:
pass
if CUBLAS_IS_AVAILABLE:
class cublas_ops(disable_weight_init):
class Linear(CublasLinear, disable_weight_init.Linear):
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
return super().forward(input)
def forward(self, *args, **kwargs):
return super().forward(*args, **kwargs)
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
if scaled_fp8 is not None:
@@ -369,6 +411,15 @@ def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_
):
return fp8_ops
if (
PerformanceFeature.CublasOps in args.fast and
CUBLAS_IS_AVAILABLE and
weight_dtype == torch.float16 and
(compute_dtype == torch.float16 or compute_dtype is None)
):
logging.info("Using cublas ops")
return cublas_ops
if compute_dtype is None or weight_dtype == compute_dtype:
return disable_weight_init

View File

@@ -48,6 +48,7 @@ def get_all_callbacks(call_type: str, transformer_options: dict, is_model_option
class WrappersMP:
OUTER_SAMPLE = "outer_sample"
PREPARE_SAMPLING = "prepare_sampling"
SAMPLER_SAMPLE = "sampler_sample"
CALC_COND_BATCH = "calc_cond_batch"
APPLY_MODEL = "apply_model"

55
comfy/rmsnorm.py Normal file
View File

@@ -0,0 +1,55 @@
import torch
import comfy.model_management
import numbers
RMSNorm = None
try:
rms_norm_torch = torch.nn.functional.rms_norm
RMSNorm = torch.nn.RMSNorm
except:
rms_norm_torch = None
def rms_norm(x, weight=None, eps=1e-6):
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
if weight is None:
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
else:
return rms_norm_torch(x, weight.shape, weight=comfy.model_management.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
else:
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
if weight is None:
return r
else:
return r * comfy.model_management.cast_to(weight, dtype=x.dtype, device=x.device)
if RMSNorm is None:
class RMSNorm(torch.nn.Module):
def __init__(
self,
normalized_shape,
eps=None,
elementwise_affine=True,
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
if isinstance(normalized_shape, numbers.Integral):
# mypy error: incompatible types in assignment
normalized_shape = (normalized_shape,) # type: ignore[assignment]
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = torch.nn.Parameter(
torch.empty(self.normalized_shape, **factory_kwargs)
)
else:
self.register_parameter("weight", None)
self.bias = None
def forward(self, x):
return rms_norm(x, self.weight, self.eps)

View File

@@ -106,6 +106,13 @@ def cleanup_additional_models(models):
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
_prepare_sampling,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
)
return executor.execute(model, noise_shape, conds, model_options=model_options)
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
real_model: BaseModel = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)

View File

@@ -710,7 +710,7 @@ KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_c
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
"gradient_estimation", "er_sde"]
"gradient_estimation", "er_sde", "seeds_2", "seeds_3"]
class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):

View File

@@ -41,6 +41,7 @@ import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2
import comfy.text_encoders.wan
import comfy.text_encoders.hidream
import comfy.model_patcher
import comfy.lora
@@ -265,6 +266,7 @@ class VAE:
self.process_input = lambda image: image * 2.0 - 1.0
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
self.working_dtypes = [torch.bfloat16, torch.float32]
self.disable_offload = False
self.downscale_index_formula = None
self.upscale_index_formula = None
@@ -337,6 +339,7 @@ class VAE:
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.disable_offload = True
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd or "layers.4.layers.1.attn_block.attn.qkv.weight" in sd or "encoder.layers.4.layers.1.attn_block.attn.qkv.weight" in sd: #genmo mochi vae
if "blocks.2.blocks.3.stack.5.weight" in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "decoder."})
@@ -515,7 +518,7 @@ class VAE:
pixel_samples = None
try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
@@ -544,7 +547,7 @@ class VAE:
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
self.throw_exception_if_invalid()
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
dims = samples.ndim - 2
args = {}
if tile_x is not None:
@@ -578,7 +581,7 @@ class VAE:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / max(1, memory_used))
batch_number = max(1, batch_number)
@@ -612,7 +615,7 @@ class VAE:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) # TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
args = {}
if tile_x is not None:
@@ -851,6 +854,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif len(clip_data) == 3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif len(clip_data) == 4:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data), **llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
parameters = 0
for c in clip_data:

View File

@@ -82,7 +82,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
LAYERS = [
"last",
"pooled",
"hidden"
"hidden",
"all"
]
def __init__(self, device="cpu", max_length=77,
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
@@ -93,6 +94,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
if textmodel_json_config is None:
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
if "model_name" not in model_options:
model_options = {**model_options, "model_name": "clip_l"}
if isinstance(textmodel_json_config, dict):
config = textmodel_json_config
@@ -100,6 +103,10 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
with open(textmodel_json_config) as f:
config = json.load(f)
te_model_options = model_options.get("{}_model_config".format(model_options.get("model_name", "")), {})
for k, v in te_model_options.items():
config[k] = v
operations = model_options.get("custom_operations", None)
scaled_fp8 = None
@@ -147,7 +154,9 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
def set_clip_options(self, options):
layer_idx = options.get("layer", self.layer_idx)
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
if layer_idx is None or abs(layer_idx) > self.num_layers:
if self.layer == "all":
pass
elif layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last"
else:
self.layer = "hidden"
@@ -244,7 +253,12 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
if self.enable_attention_masks:
attention_mask_model = attention_mask
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
if self.layer == "all":
intermediate_output = "all"
else:
intermediate_output = self.layer_idx
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
if self.layer == "last":
z = outputs[0].float()
@@ -447,7 +461,7 @@ class SDTokenizer:
if tokenizer_path is None:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
self.max_length = max_length
self.max_length = tokenizer_data.get("{}_max_length".format(embedding_key), max_length)
self.min_length = min_length
self.end_token = None
@@ -645,6 +659,7 @@ class SD1ClipModel(torch.nn.Module):
self.clip = "clip_{}".format(self.clip_name)
clip_model = model_options.get("{}_class".format(self.clip), clip_model)
model_options = {**model_options, "model_name": self.clip}
setattr(self, self.clip, clip_model(device=device, dtype=dtype, model_options=model_options, **kwargs))
self.dtypes = set()

View File

@@ -9,6 +9,7 @@ class SDXLClipG(sd1_clip.SDClipModel):
layer_idx=-2
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
model_options = {**model_options, "model_name": "clip_g"}
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False, return_projected_pooled=True, model_options=model_options)
@@ -17,14 +18,13 @@ class SDXLClipG(sd1_clip.SDClipModel):
class SDXLClipGTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g', tokenizer_data=tokenizer_data)
class SDXLTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
@@ -41,8 +41,7 @@ class SDXLTokenizer:
class SDXLClipModel(torch.nn.Module):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__()
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
self.clip_g = SDXLClipG(device=device, dtype=dtype, model_options=model_options)
self.dtypes = set([dtype])
@@ -75,7 +74,7 @@ class SDXLRefinerClipModel(sd1_clip.SD1ClipModel):
class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g', tokenizer_data=tokenizer_data)
class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
@@ -84,6 +83,7 @@ class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
class StableCascadeClipG(sd1_clip.SDClipModel):
def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
model_options = {**model_options, "model_name": "clip_g"}
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True, return_projected_pooled=True, model_options=model_options)

View File

@@ -969,12 +969,24 @@ class WAN21_I2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "i2v",
"in_dim": 36,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21(self, image_to_video=True, device=device)
return out
class WAN21_FunControl2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "i2v",
"in_dim": 48,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21(self, image_to_video=False, device=device)
return out
class Hunyuan3Dv2(supported_models_base.BASE):
unet_config = {
"image_model": "hunyuan3d2",
@@ -1013,6 +1025,36 @@ class Hunyuan3Dv2mini(Hunyuan3Dv2):
latent_format = latent_formats.Hunyuan3Dv2mini
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, Hunyuan3Dv2mini, Hunyuan3Dv2]
class HiDream(supported_models_base.BASE):
unet_config = {
"image_model": "hidream",
}
sampling_settings = {
"shift": 3.0,
}
sampling_settings = {
}
# memory_usage_factor = 1.2 # TODO
unet_extra_config = {}
latent_format = latent_formats.Flux
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HiDream(self, device=device)
return out
def clip_target(self, state_dict={}):
return None # TODO
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream]
models += [SVD_img2vid]

View File

@@ -11,7 +11,7 @@ class PT5XlModel(sd1_clip.SDClipModel):
class PT5XlTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_pile_tokenizer"), "tokenizer.model")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1)
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1, tokenizer_data=tokenizer_data)
class AuraT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@@ -22,7 +22,7 @@ class CosmosT5XXL(sd1_clip.SD1ClipModel):
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512)
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, tokenizer_data=tokenizer_data)
class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer):

View File

@@ -9,14 +9,13 @@ import os
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
class FluxTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
@@ -35,8 +34,7 @@ class FluxClipModel(torch.nn.Module):
def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options={}):
super().__init__()
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
self.dtypes = set([dtype, dtype_t5])

View File

@@ -18,7 +18,7 @@ class MochiT5XXL(sd1_clip.SD1ClipModel):
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
class MochiT5Tokenizer(sd1_clip.SD1Tokenizer):

View File

@@ -0,0 +1,151 @@
from . import hunyuan_video
from . import sd3_clip
from comfy import sd1_clip
from comfy import sdxl_clip
import comfy.model_management
import torch
import logging
class HiDreamTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.t5xxl = sd3_clip.T5XXLTokenizer(embedding_directory=embedding_directory, min_length=128, max_length=128, tokenizer_data=tokenizer_data)
self.llama = hunyuan_video.LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=128, pad_token=128009, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
t5xxl = self.t5xxl.tokenize_with_weights(text, return_word_ids)
out["t5xxl"] = [t5xxl[0]] # Use only first 128 tokens
out["llama"] = self.llama.tokenize_with_weights(text, return_word_ids)
return out
def untokenize(self, token_weight_pair):
return self.clip_g.untokenize(token_weight_pair)
def state_dict(self):
return {}
class HiDreamTEModel(torch.nn.Module):
def __init__(self, clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, device="cpu", dtype=None, model_options={}):
super().__init__()
self.dtypes = set()
if clip_l:
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=True, model_options=model_options)
self.dtypes.add(dtype)
else:
self.clip_l = None
if clip_g:
self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype, model_options=model_options)
self.dtypes.add(dtype)
else:
self.clip_g = None
if t5:
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
self.t5xxl = sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options, attention_mask=True)
self.dtypes.add(dtype_t5)
else:
self.t5xxl = None
if llama:
dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device)
if "vocab_size" not in model_options:
model_options["vocab_size"] = 128256
self.llama = hunyuan_video.LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options, layer="all", layer_idx=None, special_tokens={"start": 128000, "pad": 128009})
self.dtypes.add(dtype_llama)
else:
self.llama = None
logging.debug("Created HiDream text encoder with: clip_l {}, clip_g {}, t5xxl {}:{}, llama {}:{}".format(clip_l, clip_g, t5, dtype_t5, llama, dtype_llama))
def set_clip_options(self, options):
if self.clip_l is not None:
self.clip_l.set_clip_options(options)
if self.clip_g is not None:
self.clip_g.set_clip_options(options)
if self.t5xxl is not None:
self.t5xxl.set_clip_options(options)
if self.llama is not None:
self.llama.set_clip_options(options)
def reset_clip_options(self):
if self.clip_l is not None:
self.clip_l.reset_clip_options()
if self.clip_g is not None:
self.clip_g.reset_clip_options()
if self.t5xxl is not None:
self.t5xxl.reset_clip_options()
if self.llama is not None:
self.llama.reset_clip_options()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_l = token_weight_pairs["l"]
token_weight_pairs_g = token_weight_pairs["g"]
token_weight_pairs_t5 = token_weight_pairs["t5xxl"]
token_weight_pairs_llama = token_weight_pairs["llama"]
lg_out = None
pooled = None
extra = {}
if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
if self.clip_l is not None:
lg_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
else:
l_pooled = torch.zeros((1, 768), device=comfy.model_management.intermediate_device())
if self.clip_g is not None:
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
else:
g_pooled = torch.zeros((1, 1280), device=comfy.model_management.intermediate_device())
pooled = torch.cat((l_pooled, g_pooled), dim=-1)
if self.t5xxl is not None:
t5_output = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
t5_out, t5_pooled = t5_output[:2]
if self.llama is not None:
ll_output = self.llama.encode_token_weights(token_weight_pairs_llama)
ll_out, ll_pooled = ll_output[:2]
ll_out = ll_out[:, 1:]
if t5_out is None:
t5_out = torch.zeros((1, 1, 4096), device=comfy.model_management.intermediate_device())
if ll_out is None:
ll_out = torch.zeros((1, 32, 1, 4096), device=comfy.model_management.intermediate_device())
if pooled is None:
pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device())
extra["conditioning_llama3"] = ll_out
return t5_out, pooled, extra
def load_sd(self, sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
return self.clip_g.load_sd(sd)
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
return self.clip_l.load_sd(sd)
elif "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
return self.t5xxl.load_sd(sd)
else:
return self.llama.load_sd(sd)
def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None):
class HiDreamTEModel_(HiDreamTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["llama_scaled_fp8"] = llama_scaled_fp8
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, dtype_t5=dtype_t5, dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
return HiDreamTEModel_

View File

@@ -21,26 +21,31 @@ def llama_detect(state_dict, prefix=""):
class LLAMA3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256):
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256, pad_token=128258):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=128258, min_length=min_length)
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=pad_token, min_length=min_length, tokenizer_data=tokenizer_data)
class LLAMAModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}, special_tokens={"start": 128000, "pad": 128258}):
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
if llama_scaled_fp8 is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 128000, "pad": 128258}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
textmodel_json_config = {}
vocab_size = model_options.get("vocab_size", None)
if vocab_size is not None:
textmodel_json_config["vocab_size"] = vocab_size
model_options = {**model_options, "model_name": "llama"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens=special_tokens, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class HunyuanVideoTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>""" # 95 tokens
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1)
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, image_interleave=1, **kwargs):
out = {}
@@ -72,8 +77,7 @@ class HunyuanVideoClipModel(torch.nn.Module):
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
super().__init__()
dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device)
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.llama = LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options)
self.dtypes = set([dtype, dtype_llama])

View File

@@ -9,24 +9,26 @@ import torch
class HyditBertModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json")
model_options = {**model_options, "model_name": "hydit_clip"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=BertModel, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
class HyditBertTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77)
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77, tokenizer_data=tokenizer_data)
class MT5XLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_config_xl.json")
model_options = {**model_options, "model_name": "mt5xl"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
class MT5XLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
#tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_tokenizer"), "spiece.model")
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
@@ -35,7 +37,7 @@ class HyditTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
mt5_tokenizer_data = tokenizer_data.get("mt5xl.spiece_model", None)
self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory)
self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
self.mt5xl = MT5XLTokenizer(tokenizer_data={**tokenizer_data, "spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}

View File

@@ -268,11 +268,17 @@ class Llama2_(nn.Module):
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
intermediate = None
all_intermediate = None
if intermediate_output is not None:
if intermediate_output < 0:
if intermediate_output == "all":
all_intermediate = []
intermediate_output = None
elif intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
for i, layer in enumerate(self.layers):
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
x = layer(
x=x,
attention_mask=mask,
@@ -283,6 +289,12 @@ class Llama2_(nn.Module):
intermediate = x.clone()
x = self.norm(x)
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
if all_intermediate is not None:
intermediate = torch.cat(all_intermediate, dim=1)
if intermediate is not None and final_layer_norm_intermediate:
intermediate = self.norm(intermediate)

View File

@@ -1,30 +1,27 @@
from comfy import sd1_clip
import os
class LongClipTokenizer_(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(max_length=248, embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
class LongClipModel_(sd1_clip.SDClipModel):
def __init__(self, *args, **kwargs):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "long_clipl.json")
super().__init__(*args, textmodel_json_config=textmodel_json_config, **kwargs)
class LongClipTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=LongClipTokenizer_)
class LongClipModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
super().__init__(device=device, dtype=dtype, model_options=model_options, clip_model=LongClipModel_, **kwargs)
def model_options_long_clip(sd, tokenizer_data, model_options):
w = sd.get("clip_l.text_model.embeddings.position_embedding.weight", None)
if w is None:
w = sd.get("clip_g.text_model.embeddings.position_embedding.weight", None)
else:
model_name = "clip_g"
if w is None:
w = sd.get("text_model.embeddings.position_embedding.weight", None)
if w is not None and w.shape[0] == 248:
if w is not None:
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
model_name = "clip_g"
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
model_name = "clip_l"
else:
model_name = "clip_l"
if w is not None:
tokenizer_data = tokenizer_data.copy()
model_options = model_options.copy()
tokenizer_data["clip_l_tokenizer_class"] = LongClipTokenizer_
model_options["clip_l_class"] = LongClipModel_
model_config = model_options.get("model_config", {})
model_config["max_position_embeddings"] = w.shape[0]
model_options["{}_model_config".format(model_name)] = model_config
tokenizer_data["{}_max_length".format(model_name)] = w.shape[0]
return tokenizer_data, model_options

View File

@@ -6,7 +6,7 @@ import comfy.text_encoders.genmo
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128) #pad to 128?
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128, tokenizer_data=tokenizer_data) #pad to 128?
class LTXVT5Tokenizer(sd1_clip.SD1Tokenizer):

View File

@@ -6,7 +6,7 @@ import comfy.text_encoders.llama
class Gemma2BTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False})
super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}

View File

@@ -24,7 +24,7 @@ class PixArtT5XXL(sd1_clip.SD1ClipModel):
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1) # no padding
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) # no padding
class PixArtTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@@ -11,7 +11,7 @@ class T5BaseModel(sd1_clip.SDClipModel):
class T5BaseTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128)
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128, tokenizer_data=tokenizer_data)
class SAT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@@ -12,7 +12,7 @@ class SD2ClipHModel(sd1_clip.SDClipModel):
class SD2ClipHTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024)
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024, embedding_key='clip_h', tokenizer_data=tokenizer_data)
class SD2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@@ -15,6 +15,7 @@ class T5XXLModel(sd1_clip.SDClipModel):
model_options = model_options.copy()
model_options["scaled_fp8"] = t5xxl_scaled_fp8
model_options = {**model_options, "model_name": "t5xxl"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
@@ -31,17 +32,16 @@ def t5_xxl_detect(state_dict, prefix=""):
return out
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=77, max_length=99999999):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=max_length, min_length=min_length, tokenizer_data=tokenizer_data)
class SD3Tokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
@@ -61,8 +61,7 @@ class SD3ClipModel(torch.nn.Module):
super().__init__()
self.dtypes = set()
if clip_l:
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False, model_options=model_options)
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False, model_options=model_options)
self.dtypes.add(dtype)
else:
self.clip_l = None

View File

@@ -11,7 +11,7 @@ class UMT5XXlModel(sd1_clip.SDClipModel):
class UMT5XXlTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=4096, embedding_key='umt5xxl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=0)
super().__init__(tokenizer, pad_with_end=False, embedding_size=4096, embedding_key='umt5xxl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=0, tokenizer_data=tokenizer_data)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}

View File

@@ -316,3 +316,156 @@ class LRUCache(BasicCache):
self.children[cache_key].append(self.cache_key_set.get_data_key(child_id))
return self
class DependencyAwareCache(BasicCache):
"""
A cache implementation that tracks dependencies between nodes and manages
their execution and caching accordingly. It extends the BasicCache class.
Nodes are removed from this cache once all of their descendants have been
executed.
"""
def __init__(self, key_class):
"""
Initialize the DependencyAwareCache.
Args:
key_class: The class used for generating cache keys.
"""
super().__init__(key_class)
self.descendants = {} # Maps node_id -> set of descendant node_ids
self.ancestors = {} # Maps node_id -> set of ancestor node_ids
self.executed_nodes = set() # Tracks nodes that have been executed
def set_prompt(self, dynprompt, node_ids, is_changed_cache):
"""
Clear the entire cache and rebuild the dependency graph.
Args:
dynprompt: The dynamic prompt object containing node information.
node_ids: List of node IDs to initialize the cache for.
is_changed_cache: Flag indicating if the cache has changed.
"""
# Clear all existing cache data
self.cache.clear()
self.subcaches.clear()
self.descendants.clear()
self.ancestors.clear()
self.executed_nodes.clear()
# Call the parent method to initialize the cache with the new prompt
super().set_prompt(dynprompt, node_ids, is_changed_cache)
# Rebuild the dependency graph
self._build_dependency_graph(dynprompt, node_ids)
def _build_dependency_graph(self, dynprompt, node_ids):
"""
Build the dependency graph for all nodes.
Args:
dynprompt: The dynamic prompt object containing node information.
node_ids: List of node IDs to build the graph for.
"""
self.descendants.clear()
self.ancestors.clear()
for node_id in node_ids:
self.descendants[node_id] = set()
self.ancestors[node_id] = set()
for node_id in node_ids:
inputs = dynprompt.get_node(node_id)["inputs"]
for input_data in inputs.values():
if is_link(input_data): # Check if the input is a link to another node
ancestor_id = input_data[0]
self.descendants[ancestor_id].add(node_id)
self.ancestors[node_id].add(ancestor_id)
def set(self, node_id, value):
"""
Mark a node as executed and store its value in the cache.
Args:
node_id: The ID of the node to store.
value: The value to store for the node.
"""
self._set_immediate(node_id, value)
self.executed_nodes.add(node_id)
self._cleanup_ancestors(node_id)
def get(self, node_id):
"""
Retrieve the cached value for a node.
Args:
node_id: The ID of the node to retrieve.
Returns:
The cached value for the node.
"""
return self._get_immediate(node_id)
def ensure_subcache_for(self, node_id, children_ids):
"""
Ensure a subcache exists for a node and update dependencies.
Args:
node_id: The ID of the parent node.
children_ids: List of child node IDs to associate with the parent node.
Returns:
The subcache object for the node.
"""
subcache = super()._ensure_subcache(node_id, children_ids)
for child_id in children_ids:
self.descendants[node_id].add(child_id)
self.ancestors[child_id].add(node_id)
return subcache
def _cleanup_ancestors(self, node_id):
"""
Check if ancestors of a node can be removed from the cache.
Args:
node_id: The ID of the node whose ancestors are to be checked.
"""
for ancestor_id in self.ancestors.get(node_id, []):
if ancestor_id in self.executed_nodes:
# Remove ancestor if all its descendants have been executed
if all(descendant in self.executed_nodes for descendant in self.descendants[ancestor_id]):
self._remove_node(ancestor_id)
def _remove_node(self, node_id):
"""
Remove a node from the cache.
Args:
node_id: The ID of the node to remove.
"""
cache_key = self.cache_key_set.get_data_key(node_id)
if cache_key in self.cache:
del self.cache[cache_key]
subcache_key = self.cache_key_set.get_subcache_key(node_id)
if subcache_key in self.subcaches:
del self.subcaches[subcache_key]
def clean_unused(self):
"""
Clean up unused nodes. This is a no-op for this cache implementation.
"""
pass
def recursive_debug_dump(self):
"""
Dump the cache and dependency graph for debugging.
Returns:
A list containing the cache state and dependency graph.
"""
result = super().recursive_debug_dump()
result.append({
"descendants": self.descendants,
"ancestors": self.ancestors,
"executed_nodes": list(self.executed_nodes),
})
return result

View File

@@ -0,0 +1,32 @@
import folder_paths
import comfy.sd
import comfy.model_management
class QuadrupleCLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ),
"clip_name2": (folder_paths.get_filename_list("text_encoders"), ),
"clip_name3": (folder_paths.get_filename_list("text_encoders"), ),
"clip_name4": (folder_paths.get_filename_list("text_encoders"), )
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
CATEGORY = "advanced/loaders"
DESCRIPTION = "[Recipes]\n\nhidream: long clip-l, long clip-g, t5xxl, llama_8b_3.1_instruct"
def load_clip(self, clip_name1, clip_name2, clip_name3, clip_name4):
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1)
clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2)
clip_path3 = folder_paths.get_full_path_or_raise("text_encoders", clip_name3)
clip_path4 = folder_paths.get_full_path_or_raise("text_encoders", clip_name4)
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2, clip_path3, clip_path4], embedding_directory=folder_paths.get_folder_paths("embeddings"))
return (clip,)
NODE_CLASS_MAPPINGS = {
"QuadrupleCLIPLoader": QuadrupleCLIPLoader,
}

View File

@@ -209,6 +209,196 @@ def voxel_to_mesh(voxels, threshold=0.5, device=None):
vertices = torch.fliplr(vertices)
return vertices, faces
def voxel_to_mesh_surfnet(voxels, threshold=0.5, device=None):
if device is None:
device = torch.device("cpu")
voxels = voxels.to(device)
D, H, W = voxels.shape
padded = torch.nn.functional.pad(voxels, (1, 1, 1, 1, 1, 1), 'constant', 0)
z, y, x = torch.meshgrid(
torch.arange(D, device=device),
torch.arange(H, device=device),
torch.arange(W, device=device),
indexing='ij'
)
cell_positions = torch.stack([z.flatten(), y.flatten(), x.flatten()], dim=1)
corner_offsets = torch.tensor([
[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0],
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]
], device=device)
corner_values = torch.zeros((cell_positions.shape[0], 8), device=device)
for c, (dz, dy, dx) in enumerate(corner_offsets):
corner_values[:, c] = padded[
cell_positions[:, 0] + dz,
cell_positions[:, 1] + dy,
cell_positions[:, 2] + dx
]
corner_signs = corner_values > threshold
has_inside = torch.any(corner_signs, dim=1)
has_outside = torch.any(~corner_signs, dim=1)
contains_surface = has_inside & has_outside
active_cells = cell_positions[contains_surface]
active_signs = corner_signs[contains_surface]
active_values = corner_values[contains_surface]
if active_cells.shape[0] == 0:
return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)
edges = torch.tensor([
[0, 1], [0, 2], [0, 4], [1, 3],
[1, 5], [2, 3], [2, 6], [3, 7],
[4, 5], [4, 6], [5, 7], [6, 7]
], device=device)
cell_vertices = {}
progress = comfy.utils.ProgressBar(100)
for edge_idx, (e1, e2) in enumerate(edges):
progress.update(1)
crossing = active_signs[:, e1] != active_signs[:, e2]
if not crossing.any():
continue
cell_indices = torch.nonzero(crossing, as_tuple=True)[0]
v1 = active_values[cell_indices, e1]
v2 = active_values[cell_indices, e2]
t = torch.zeros_like(v1, device=device)
denom = v2 - v1
valid = denom != 0
t[valid] = (threshold - v1[valid]) / denom[valid]
t[~valid] = 0.5
p1 = corner_offsets[e1].float()
p2 = corner_offsets[e2].float()
intersection = p1.unsqueeze(0) + t.unsqueeze(1) * (p2.unsqueeze(0) - p1.unsqueeze(0))
for i, point in zip(cell_indices.tolist(), intersection):
if i not in cell_vertices:
cell_vertices[i] = []
cell_vertices[i].append(point)
# Calculate the final vertices as the average of intersection points for each cell
vertices = []
vertex_lookup = {}
vert_progress_mod = round(len(cell_vertices)/50)
for i, points in cell_vertices.items():
if not i % vert_progress_mod:
progress.update(1)
if points:
vertex = torch.stack(points).mean(dim=0)
vertex = vertex + active_cells[i].float()
vertex_lookup[tuple(active_cells[i].tolist())] = len(vertices)
vertices.append(vertex)
if not vertices:
return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)
final_vertices = torch.stack(vertices)
inside_corners_mask = active_signs
outside_corners_mask = ~active_signs
inside_counts = inside_corners_mask.sum(dim=1, keepdim=True).float()
outside_counts = outside_corners_mask.sum(dim=1, keepdim=True).float()
inside_pos = torch.zeros((active_cells.shape[0], 3), device=device)
outside_pos = torch.zeros((active_cells.shape[0], 3), device=device)
for i in range(8):
mask_inside = inside_corners_mask[:, i].unsqueeze(1)
mask_outside = outside_corners_mask[:, i].unsqueeze(1)
inside_pos += corner_offsets[i].float().unsqueeze(0) * mask_inside
outside_pos += corner_offsets[i].float().unsqueeze(0) * mask_outside
inside_pos /= inside_counts
outside_pos /= outside_counts
gradients = inside_pos - outside_pos
pos_dirs = torch.tensor([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
], device=device)
cross_products = [
torch.linalg.cross(pos_dirs[i].float(), pos_dirs[j].float())
for i in range(3) for j in range(i+1, 3)
]
faces = []
all_keys = set(vertex_lookup.keys())
face_progress_mod = round(len(active_cells)/38*3)
for pair_idx, (i, j) in enumerate([(0,1), (0,2), (1,2)]):
dir_i = pos_dirs[i]
dir_j = pos_dirs[j]
cross_product = cross_products[pair_idx]
ni_positions = active_cells + dir_i
nj_positions = active_cells + dir_j
diag_positions = active_cells + dir_i + dir_j
alignments = torch.matmul(gradients, cross_product)
valid_quads = []
quad_indices = []
for idx, active_cell in enumerate(active_cells):
if not idx % face_progress_mod:
progress.update(1)
cell_key = tuple(active_cell.tolist())
ni_key = tuple(ni_positions[idx].tolist())
nj_key = tuple(nj_positions[idx].tolist())
diag_key = tuple(diag_positions[idx].tolist())
if cell_key in all_keys and ni_key in all_keys and nj_key in all_keys and diag_key in all_keys:
v0 = vertex_lookup[cell_key]
v1 = vertex_lookup[ni_key]
v2 = vertex_lookup[nj_key]
v3 = vertex_lookup[diag_key]
valid_quads.append((v0, v1, v2, v3))
quad_indices.append(idx)
for q_idx, (v0, v1, v2, v3) in enumerate(valid_quads):
cell_idx = quad_indices[q_idx]
if alignments[cell_idx] > 0:
faces.append(torch.tensor([v0, v1, v3], device=device, dtype=torch.long))
faces.append(torch.tensor([v0, v3, v2], device=device, dtype=torch.long))
else:
faces.append(torch.tensor([v0, v3, v1], device=device, dtype=torch.long))
faces.append(torch.tensor([v0, v2, v3], device=device, dtype=torch.long))
if faces:
faces = torch.stack(faces)
else:
faces = torch.zeros((0, 3), dtype=torch.long, device=device)
v_min = 0
v_max = max(D, H, W)
final_vertices = final_vertices - (v_min + v_max) / 2
scale = (v_max - v_min) / 2
if scale > 0:
final_vertices = final_vertices / scale
final_vertices = torch.fliplr(final_vertices)
return final_vertices, faces
class MESH:
def __init__(self, vertices, faces):
@@ -237,6 +427,34 @@ class VoxelToMeshBasic:
return (MESH(torch.stack(vertices), torch.stack(faces)), )
class VoxelToMesh:
@classmethod
def INPUT_TYPES(s):
return {"required": {"voxel": ("VOXEL", ),
"algorithm": (["surface net", "basic"], ),
"threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("MESH",)
FUNCTION = "decode"
CATEGORY = "3d"
def decode(self, voxel, algorithm, threshold):
vertices = []
faces = []
if algorithm == "basic":
mesh_function = voxel_to_mesh
elif algorithm == "surface net":
mesh_function = voxel_to_mesh_surfnet
for x in voxel.data:
v, f = mesh_function(x, threshold=threshold, device=None)
vertices.append(v)
faces.append(f)
return (MESH(torch.stack(vertices), torch.stack(faces)), )
def save_glb(vertices, faces, filepath, metadata=None):
"""
@@ -244,7 +462,7 @@ def save_glb(vertices, faces, filepath, metadata=None):
Parameters:
vertices: torch.Tensor of shape (N, 3) - The vertex coordinates
faces: torch.Tensor of shape (M, 4) or (M, 3) - The face indices (quad or triangle faces)
faces: torch.Tensor of shape (M, 3) - The face indices (triangle faces)
filepath: str - Output filepath (should end with .glb)
"""
@@ -411,5 +629,6 @@ NODE_CLASS_MAPPINGS = {
"Hunyuan3Dv2ConditioningMultiView": Hunyuan3Dv2ConditioningMultiView,
"VAEDecodeHunyuan3D": VAEDecodeHunyuan3D,
"VoxelToMeshBasic": VoxelToMeshBasic,
"VoxelToMesh": VoxelToMesh,
"SaveGLB": SaveGLB,
}

View File

@@ -446,7 +446,6 @@ class LTXVPreprocess:
CATEGORY = "image"
def preprocess(self, image, img_compression):
if img_compression > 0:
output_images = []
for i in range(image.shape[0]):
output_images.append(preprocess(image[i], img_compression))

View File

@@ -2,6 +2,7 @@ import numpy as np
import scipy.ndimage
import torch
import comfy.utils
import node_helpers
from nodes import MAX_RESOLUTION
@@ -87,6 +88,7 @@ class ImageCompositeMasked:
CATEGORY = "image"
def composite(self, destination, source, x, y, resize_source, mask = None):
destination, source = node_helpers.image_alpha_fix(destination, source)
destination = destination.clone().movedim(-1, 1)
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
return (output,)

View File

@@ -0,0 +1,56 @@
# from https://github.com/bebebe666/OptimalSteps
import numpy as np
import torch
def loglinear_interp(t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
return interped_ys
NOISE_LEVELS = {"FLUX": [0.9968, 0.9886, 0.9819, 0.975, 0.966, 0.9471, 0.9158, 0.8287, 0.5512, 0.2808, 0.001],
"Wan":[1.0, 0.997, 0.995, 0.993, 0.991, 0.989, 0.987, 0.985, 0.98, 0.975, 0.973, 0.968, 0.96, 0.946, 0.927, 0.902, 0.864, 0.776, 0.539, 0.208, 0.001],
}
class OptimalStepsScheduler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model_type": (["FLUX", "Wan"], ),
"steps": ("INT", {"default": 20, "min": 3, "max": 1000}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("SIGMAS",)
CATEGORY = "sampling/custom_sampling/schedulers"
FUNCTION = "get_sigmas"
def get_sigmas(self, model_type, steps, denoise):
total_steps = steps
if denoise < 1.0:
if denoise <= 0.0:
return (torch.FloatTensor([]),)
total_steps = round(steps * denoise)
sigmas = NOISE_LEVELS[model_type][:]
if (steps + 1) != len(sigmas):
sigmas = loglinear_interp(sigmas, steps + 1)
sigmas = sigmas[-(total_steps + 1):]
sigmas[-1] = 0
return (torch.FloatTensor(sigmas), )
NODE_CLASS_MAPPINGS = {
"OptimalStepsScheduler": OptimalStepsScheduler,
}

View File

@@ -6,7 +6,7 @@ import math
import comfy.utils
import comfy.model_management
import node_helpers
class Blend:
def __init__(self):
@@ -34,6 +34,7 @@ class Blend:
CATEGORY = "image/postprocessing"
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
image1, image2 = node_helpers.image_alpha_fix(image1, image2)
image2 = image2.to(image1.device)
if image1.shape != image2.shape:
image2 = image2.permute(0, 3, 1, 2)

View File

@@ -3,6 +3,8 @@ import node_helpers
import torch
import comfy.model_management
import comfy.utils
import comfy.latent_formats
import comfy.clip_vision
class WanImageToVideo:
@@ -49,6 +51,151 @@ class WanImageToVideo:
return (positive, negative, out_latent)
class WanFunControlToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE", ),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"start_image": ("IMAGE", ),
"control_video": ("IMAGE", ),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None, control_video=None):
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = comfy.latent_formats.Wan21().process_out(concat_latent)
concat_latent = concat_latent.repeat(1, 2, 1, 1, 1)
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(start_image[:, :, :, :3])
concat_latent[:,16:,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
if control_video is not None:
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(control_video[:, :, :, :3])
concat_latent[:,:16,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent})
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
out_latent = {}
out_latent["samples"] = latent
return (positive, negative, out_latent)
class WanFirstLastFrameToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE", ),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"clip_vision_start_image": ("CLIP_VISION_OUTPUT", ),
"clip_vision_end_image": ("CLIP_VISION_OUTPUT", ),
"start_image": ("IMAGE", ),
"end_image": ("IMAGE", ),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_start_image=None, clip_vision_end_image=None):
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
if end_image is not None:
end_image = comfy.utils.common_upscale(end_image[-length:].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
image = torch.ones((length, height, width, 3)) * 0.5
mask = torch.ones((1, 1, latent.shape[2] * 4, latent.shape[-2], latent.shape[-1]))
if start_image is not None:
image[:start_image.shape[0]] = start_image
mask[:, :, :start_image.shape[0] + 3] = 0.0
if end_image is not None:
image[-end_image.shape[0]:] = end_image
mask[:, :, -end_image.shape[0]:] = 0.0
concat_latent_image = vae.encode(image[:, :, :, :3])
mask = mask.view(1, mask.shape[2] // 4, 4, mask.shape[3], mask.shape[4]).transpose(1, 2)
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
if clip_vision_start_image is not None:
clip_vision_output = clip_vision_start_image
if clip_vision_end_image is not None:
if clip_vision_output is not None:
states = torch.cat([clip_vision_output.penultimate_hidden_states, clip_vision_end_image.penultimate_hidden_states], dim=-2)
clip_vision_output = comfy.clip_vision.Output()
clip_vision_output.penultimate_hidden_states = states
else:
clip_vision_output = clip_vision_end_image
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
out_latent = {}
out_latent["samples"] = latent
return (positive, negative, out_latent)
class WanFunInpaintToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE", ),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"start_image": ("IMAGE", ),
"end_image": ("IMAGE", ),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_output=None):
flfv = WanFirstLastFrameToVideo()
return flfv.encode(positive, negative, vae, width, height, length, batch_size, start_image=start_image, end_image=end_image, clip_vision_start_image=clip_vision_output)
NODE_CLASS_MAPPINGS = {
"WanImageToVideo": WanImageToVideo,
"WanFunControlToVideo": WanFunControlToVideo,
"WanFunInpaintToVideo": WanFunInpaintToVideo,
"WanFirstLastFrameToVideo": WanFirstLastFrameToVideo,
}

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.27"
__version__ = "0.3.29"

View File

@@ -15,7 +15,7 @@ import nodes
import comfy.model_management
from comfy_execution.graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker
from comfy_execution.graph_utils import is_link, GraphBuilder
from comfy_execution.caching import HierarchicalCache, LRUCache, CacheKeySetInputSignature, CacheKeySetID
from comfy_execution.caching import HierarchicalCache, LRUCache, DependencyAwareCache, CacheKeySetInputSignature, CacheKeySetID
from comfy_execution.validation import validate_node_input
class ExecutionResult(Enum):
@@ -59,20 +59,27 @@ class IsChangedCache:
self.is_changed[node_id] = node["is_changed"]
return self.is_changed[node_id]
class CacheSet:
def __init__(self, lru_size=None):
if lru_size is None or lru_size == 0:
self.init_classic_cache()
else:
self.init_lru_cache(lru_size)
self.all = [self.outputs, self.ui, self.objects]
# Useful for those with ample RAM/VRAM -- allows experimenting without
# blowing away the cache every time
def init_lru_cache(self, cache_size):
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.objects = HierarchicalCache(CacheKeySetID)
class CacheType(Enum):
CLASSIC = 0
LRU = 1
DEPENDENCY_AWARE = 2
class CacheSet:
def __init__(self, cache_type=None, cache_size=None):
if cache_type == CacheType.DEPENDENCY_AWARE:
self.init_dependency_aware_cache()
logging.info("Disabling intermediate node cache.")
elif cache_type == CacheType.LRU:
if cache_size is None:
cache_size = 0
self.init_lru_cache(cache_size)
logging.info("Using LRU cache")
else:
self.init_classic_cache()
self.all = [self.outputs, self.ui, self.objects]
# Performs like the old cache -- dump data ASAP
def init_classic_cache(self):
@@ -80,6 +87,17 @@ class CacheSet:
self.ui = HierarchicalCache(CacheKeySetInputSignature)
self.objects = HierarchicalCache(CacheKeySetID)
def init_lru_cache(self, cache_size):
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.objects = HierarchicalCache(CacheKeySetID)
# only hold cached items while the decendents have not executed
def init_dependency_aware_cache(self):
self.outputs = DependencyAwareCache(CacheKeySetInputSignature)
self.ui = DependencyAwareCache(CacheKeySetInputSignature)
self.objects = DependencyAwareCache(CacheKeySetID)
def recursive_debug_dump(self):
result = {
"outputs": self.outputs.recursive_debug_dump(),
@@ -414,13 +432,14 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
return (ExecutionResult.SUCCESS, None, None)
class PromptExecutor:
def __init__(self, server, lru_size=None):
self.lru_size = lru_size
def __init__(self, server, cache_type=False, cache_size=None):
self.cache_size = cache_size
self.cache_type = cache_type
self.server = server
self.reset()
def reset(self):
self.caches = CacheSet(self.lru_size)
self.caches = CacheSet(cache_type=self.cache_type, cache_size=self.cache_size)
self.status_messages = []
self.success = True
@@ -775,7 +794,7 @@ def validate_prompt(prompt):
"details": f"Node ID '#{x}'",
"extra_info": {}
}
return (False, error, [], [])
return (False, error, [], {})
class_type = prompt[x]['class_type']
class_ = nodes.NODE_CLASS_MAPPINGS.get(class_type, None)
@@ -786,7 +805,7 @@ def validate_prompt(prompt):
"details": f"Node ID '#{x}'",
"extra_info": {}
}
return (False, error, [], [])
return (False, error, [], {})
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE is True:
outputs.add(x)
@@ -798,7 +817,7 @@ def validate_prompt(prompt):
"details": "",
"extra_info": {}
}
return (False, error, [], [])
return (False, error, [], {})
good_outputs = set()
errors = []

View File

@@ -85,6 +85,7 @@ cache_helper = CacheHelper()
extension_mimetypes_cache = {
"webp" : "image",
"fbx" : "model",
}
def map_legacy(folder_name: str) -> str:
@@ -140,11 +141,14 @@ def get_directory_by_type(type_name: str) -> str | None:
return get_input_directory()
return None
def filter_files_content_types(files: list[str], content_types: Literal["image", "video", "audio"]) -> list[str]:
def filter_files_content_types(files: list[str], content_types: Literal["image", "video", "audio", "model"]) -> list[str]:
"""
Example:
files = os.listdir(folder_paths.get_input_directory())
filter_files_content_types(files, ["image", "audio", "video"])
videos = filter_files_content_types(files, ["video"])
Note:
- 'model' in MIME context refers to 3D models, not files containing trained weights and parameters
"""
global extension_mimetypes_cache
result = []

10
main.py
View File

@@ -10,6 +10,7 @@ from app.logger import setup_logger
import itertools
import utils.extra_config
import logging
import sys
if __name__ == "__main__":
#NOTE: These do not do anything on core ComfyUI which should already have no communication with the internet, they are for custom nodes.
@@ -156,7 +157,13 @@ def cuda_malloc_warning():
def prompt_worker(q, server_instance):
current_time: float = 0.0
e = execution.PromptExecutor(server_instance, lru_size=args.cache_lru)
cache_type = execution.CacheType.CLASSIC
if args.cache_lru > 0:
cache_type = execution.CacheType.LRU
elif args.cache_none:
cache_type = execution.CacheType.DEPENDENCY_AWARE
e = execution.PromptExecutor(server_instance, cache_type=cache_type, cache_size=args.cache_lru)
last_gc_collect = 0
need_gc = False
gc_collect_interval = 10.0
@@ -295,6 +302,7 @@ def start_comfyui(asyncio_loop=None):
if __name__ == "__main__":
# Running directly, just start ComfyUI.
logging.info("Python version: {}".format(sys.version))
logging.info("ComfyUI version: {}".format(comfyui_version.__version__))
event_loop, _, start_all_func = start_comfyui()

View File

@@ -44,3 +44,11 @@ def string_to_torch_dtype(string):
return torch.float16
if string == "bf16":
return torch.bfloat16
def image_alpha_fix(destination, source):
if destination.shape[-1] < source.shape[-1]:
source = source[...,:destination.shape[-1]]
elif destination.shape[-1] > source.shape[-1]:
destination = torch.nn.functional.pad(destination, (0, 1))
destination[..., -1] = 1.0
return destination, source

View File

@@ -786,6 +786,8 @@ class ControlNetLoader:
def load_controlnet(self, control_net_name):
controlnet_path = folder_paths.get_full_path_or_raise("controlnet", control_net_name)
controlnet = comfy.controlnet.load_controlnet(controlnet_path)
if controlnet is None:
raise RuntimeError("ERROR: controlnet file is invalid and does not contain a valid controlnet model.")
return (controlnet,)
class DiffControlNetLoader:
@@ -1006,6 +1008,8 @@ class CLIPVisionLoader:
def load_clip(self, clip_name):
clip_path = folder_paths.get_full_path_or_raise("clip_vision", clip_name)
clip_vision = comfy.clip_vision.load(clip_path)
if clip_vision is None:
raise RuntimeError("ERROR: clip vision file is invalid and does not contain a valid vision model.")
return (clip_vision,)
class CLIPVisionEncode:
@@ -1650,6 +1654,7 @@ class LoadImage:
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
files = folder_paths.filter_files_content_types(files, ["image"])
return {"required":
{"image": (sorted(files), {"image_upload": True})},
}
@@ -1688,6 +1693,9 @@ class LoadImage:
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
elif i.mode == 'P' and 'transparency' in i.info:
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
output_images.append(image)
@@ -2123,21 +2131,25 @@ def get_module_name(module_path: str) -> str:
def load_custom_node(module_path: str, ignore=set(), module_parent="custom_nodes") -> bool:
module_name = os.path.basename(module_path)
module_name = get_module_name(module_path)
if os.path.isfile(module_path):
sp = os.path.splitext(module_path)
module_name = sp[0]
sys_module_name = module_name
elif os.path.isdir(module_path):
sys_module_name = module_path.replace(".", "_x_")
try:
logging.debug("Trying to load custom node {}".format(module_path))
if os.path.isfile(module_path):
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
module_spec = importlib.util.spec_from_file_location(sys_module_name, module_path)
module_dir = os.path.split(module_path)[0]
else:
module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
module_spec = importlib.util.spec_from_file_location(sys_module_name, os.path.join(module_path, "__init__.py"))
module_dir = module_path
module = importlib.util.module_from_spec(module_spec)
sys.modules[module_name] = module
sys.modules[sys_module_name] = module
module_spec.loader.exec_module(module)
LOADED_MODULE_DIRS[module_name] = os.path.abspath(module_dir)
@@ -2268,6 +2280,8 @@ def init_builtin_extra_nodes():
"nodes_hunyuan3d.py",
"nodes_primitive.py",
"nodes_cfg.py",
"nodes_optimalsteps.py",
"nodes_hidream.py"
]
import_failed = []

View File

@@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.3.27"
version = "0.3.29"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.9"

View File

@@ -1,4 +1,5 @@
comfyui-frontend-package==1.14.5
comfyui-frontend-package==1.16.8
comfyui-workflow-templates==0.1.1
torch
torchsde
torchvision

View File

@@ -48,7 +48,7 @@ async def send_socket_catch_exception(function, message):
@web.middleware
async def cache_control(request: web.Request, handler):
response: web.Response = await handler(request)
if request.path.endswith('.js') or request.path.endswith('.css'):
if request.path.endswith('.js') or request.path.endswith('.css') or request.path.endswith('index.json'):
response.headers.setdefault('Cache-Control', 'no-cache')
return response
@@ -657,7 +657,13 @@ class PromptServer():
logging.warning("invalid prompt: {}".format(valid[1]))
return web.json_response({"error": valid[1], "node_errors": valid[3]}, status=400)
else:
return web.json_response({"error": "no prompt", "node_errors": []}, status=400)
error = {
"type": "no_prompt",
"message": "No prompt provided",
"details": "No prompt provided",
"extra_info": {}
}
return web.json_response({"error": error, "node_errors": {}}, status=400)
@routes.post("/queue")
async def post_queue(request):
@@ -730,6 +736,12 @@ class PromptServer():
for name, dir in nodes.EXTENSION_WEB_DIRS.items():
self.app.add_routes([web.static('/extensions/' + name, dir)])
workflow_templates_path = FrontendManager.templates_path()
if workflow_templates_path:
self.app.add_routes([
web.static('/templates', workflow_templates_path)
])
self.app.add_routes([
web.static('/', self.web_root),
])

View File

@@ -1,14 +1,17 @@
import pytest
import os
import tempfile
from folder_paths import filter_files_content_types
from folder_paths import filter_files_content_types, extension_mimetypes_cache
from unittest.mock import patch
@pytest.fixture(scope="module")
def file_extensions():
return {
'image': ['gif', 'heif', 'ico', 'jpeg', 'jpg', 'png', 'pnm', 'ppm', 'svg', 'tiff', 'webp', 'xbm', 'xpm'],
'audio': ['aif', 'aifc', 'aiff', 'au', 'flac', 'm4a', 'mp2', 'mp3', 'ogg', 'snd', 'wav'],
'video': ['avi', 'm2v', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ogv', 'qt', 'webm', 'wmv']
'video': ['avi', 'm2v', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ogv', 'qt', 'webm', 'wmv'],
'model': ['gltf', 'glb', 'obj', 'fbx', 'stl']
}
@@ -22,7 +25,18 @@ def mock_dir(file_extensions):
yield directory
def test_categorizes_all_correctly(mock_dir, file_extensions):
@pytest.fixture
def patched_mimetype_cache(file_extensions):
# Mock model file extensions since they may not be in the test-runner system's mimetype cache
new_cache = extension_mimetypes_cache.copy()
for extension in file_extensions["model"]:
new_cache[extension] = "model"
with patch("folder_paths.extension_mimetypes_cache", new_cache):
yield
def test_categorizes_all_correctly(mock_dir, file_extensions, patched_mimetype_cache):
files = os.listdir(mock_dir)
for content_type, extensions in file_extensions.items():
filtered_files = filter_files_content_types(files, [content_type])
@@ -30,7 +44,7 @@ def test_categorizes_all_correctly(mock_dir, file_extensions):
assert f"sample_{content_type}.{extension}" in filtered_files
def test_categorizes_all_uniquely(mock_dir, file_extensions):
def test_categorizes_all_uniquely(mock_dir, file_extensions, patched_mimetype_cache):
files = os.listdir(mock_dir)
for content_type, extensions in file_extensions.items():
filtered_files = filter_files_content_types(files, [content_type])