Compare commits

...

9 Commits

Author SHA1 Message Date
comfyanonymous
ad3bd8aa49 ComfyUI version 0.3.36 2025-05-24 17:30:37 -04:00
comfyanonymous
5a87757ef9 Better error if sageattention is installed but a dependency is missing. (#8264) 2025-05-24 06:43:12 -04:00
Christian Byrne
464aece92b update frontend package to v1.20.5 (#8260) 2025-05-23 21:53:49 -07:00
comfyanonymous
0b50d4c0db Add argument to explicitly enable fp8 compute support. (#8257)
This can be used to test if your current GPU/pytorch version supports fp8 matrix mult in combination with --fast or the fp8_e4m3fn_fast dtype.
2025-05-23 17:43:50 -04:00
drhead
30b2eb8a93 create arange on-device (#8255) 2025-05-23 16:15:06 -04:00
comfyanonymous
f85c08df06 Make VACE conditionings stackable. (#8240) 2025-05-22 19:22:26 -04:00
comfyanonymous
4202e956a0 Add append feature to conditioning_set_values (#8239)
Refactor unclipconditioning node.
2025-05-22 08:11:13 -04:00
Terry Jia
b838c36720 remove mtl from 3d model file list (#8192) 2025-05-22 08:08:36 -04:00
Chenlei Hu
fc39184ea9 Update frontend to 1.20 (#8232) 2025-05-22 02:24:36 -04:00
13 changed files with 46 additions and 32 deletions

View File

@@ -88,6 +88,7 @@ parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE"
parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
parser.add_argument("--supports-fp8-compute", action="store_true", help="ComfyUI will act like if the device supports fp8 compute.")
class LatentPreviewMethod(enum.Enum):
NoPreviews = "none"

View File

@@ -163,7 +163,7 @@ class Chroma(nn.Module):
distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype)
# get all modulation index
modulation_index = timestep_embedding(torch.arange(mod_index_length), 32).to(img.device, img.dtype)
modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype)
# we need to broadcast the modulation index here so each batch has all of the index
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
# and we need to broadcast timestep and guidance along too

View File

@@ -20,8 +20,11 @@ if model_management.xformers_enabled():
if model_management.sage_attention_enabled():
try:
from sageattention import sageattn
except ModuleNotFoundError:
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
except ModuleNotFoundError as e:
if e.name == "sageattention":
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
else:
raise e
exit(-1)
if model_management.flash_attention_enabled():

View File

@@ -635,7 +635,7 @@ class VaceWanModel(WanModel):
t,
context,
vace_context,
vace_strength=1.0,
vace_strength,
clip_fea=None,
freqs=None,
transformer_options={},
@@ -661,8 +661,11 @@ class VaceWanModel(WanModel):
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
orig_shape = list(vace_context.shape)
vace_context = vace_context.movedim(0, 1).reshape([-1] + orig_shape[2:])
c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype)
c = c.flatten(2).transpose(1, 2)
c = list(c.split(orig_shape[0], dim=0))
# arguments
x_orig = x
@@ -682,8 +685,9 @@ class VaceWanModel(WanModel):
ii = self.vace_layers_mapping.get(i, None)
if ii is not None:
c_skip, c = self.vace_blocks[ii](c, x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x += c_skip * vace_strength
for iii in range(len(c)):
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x += c_skip * vace_strength[iii]
del c_skip
# head
x = self.head(x, e)

View File

@@ -1062,20 +1062,25 @@ class WAN21_Vace(WAN21):
vace_frames = kwargs.get("vace_frames", None)
if vace_frames is None:
noise_shape[1] = 32
vace_frames = torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)
for i in range(0, vace_frames.shape[1], 16):
vace_frames = vace_frames.clone()
vace_frames[:, i:i + 16] = self.process_latent_in(vace_frames[:, i:i + 16])
vace_frames = [torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)]
mask = kwargs.get("vace_mask", None)
if mask is None:
noise_shape[1] = 64
mask = torch.ones(noise_shape, device=noise.device, dtype=noise.dtype)
mask = [torch.ones(noise_shape, device=noise.device, dtype=noise.dtype)] * len(vace_frames)
out['vace_context'] = comfy.conds.CONDRegular(torch.cat([vace_frames.to(noise), mask.to(noise)], dim=1))
vace_frames_out = []
for j in range(len(vace_frames)):
vf = vace_frames[j].clone()
for i in range(0, vf.shape[1], 16):
vf[:, i:i + 16] = self.process_latent_in(vf[:, i:i + 16])
vf = torch.cat([vf, mask[j]], dim=1)
vace_frames_out.append(vf)
vace_strength = kwargs.get("vace_strength", 1.0)
vace_frames = torch.stack(vace_frames_out, dim=1)
out['vace_context'] = comfy.conds.CONDRegular(vace_frames)
vace_strength = kwargs.get("vace_strength", [1.0] * len(vace_frames_out))
out['vace_strength'] = comfy.conds.CONDConstant(vace_strength)
return out

View File

@@ -1257,6 +1257,9 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
return False
def supports_fp8_compute(device=None):
if args.supports_fp8_compute:
return True
if not is_nvidia():
return False

View File

@@ -16,7 +16,7 @@ class Load3D():
os.makedirs(input_dir, exist_ok=True)
files = [normalize_path(os.path.join("3d", f)) for f in os.listdir(input_dir) if f.endswith(('.gltf', '.glb', '.obj', '.mtl', '.fbx', '.stl'))]
files = [normalize_path(os.path.join("3d", f)) for f in os.listdir(input_dir) if f.endswith(('.gltf', '.glb', '.obj', '.fbx', '.stl'))]
return {"required": {
"model_file": (sorted(files), {"file_upload": True}),

View File

@@ -268,8 +268,9 @@ class WanVaceToVideo:
trim_latent = reference_image.shape[2]
mask = mask.unsqueeze(0)
positive = node_helpers.conditioning_set_values(positive, {"vace_frames": control_video_latent, "vace_mask": mask, "vace_strength": strength})
negative = node_helpers.conditioning_set_values(negative, {"vace_frames": control_video_latent, "vace_mask": mask, "vace_strength": strength})
positive = node_helpers.conditioning_set_values(positive, {"vace_frames": [control_video_latent], "vace_mask": [mask], "vace_strength": [strength]}, append=True)
negative = node_helpers.conditioning_set_values(negative, {"vace_frames": [control_video_latent], "vace_mask": [mask], "vace_strength": [strength]}, append=True)
latent = torch.zeros([batch_size, 16, latent_length, height // 8, width // 8], device=comfy.model_management.intermediate_device())
out_latent = {}

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.35"
__version__ = "0.3.36"

View File

@@ -5,12 +5,18 @@ from comfy.cli_args import args
from PIL import ImageFile, UnidentifiedImageError
def conditioning_set_values(conditioning, values={}):
def conditioning_set_values(conditioning, values={}, append=False):
c = []
for t in conditioning:
n = [t[0], t[1].copy()]
for k in values:
n[1][k] = values[k]
val = values[k]
if append:
old_val = n[1].get(k, None)
if old_val is not None:
val = old_val + val
n[1][k] = val
c.append(n)
return c

View File

@@ -1103,16 +1103,7 @@ class unCLIPConditioning:
if strength == 0:
return (conditioning, )
c = []
for t in conditioning:
o = t[1].copy()
x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
if "unclip_conditioning" in o:
o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
else:
o["unclip_conditioning"] = [x]
n = [t[0], o]
c.append(n)
c = node_helpers.conditioning_set_values(conditioning, {"unclip_conditioning": [{"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}]}, append=True)
return (c, )
class GLIGENLoader:

View File

@@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.3.35"
version = "0.3.36"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.9"

View File

@@ -1,4 +1,4 @@
comfyui-frontend-package==1.19.9
comfyui-frontend-package==1.20.5
comfyui-workflow-templates==0.1.18
torch
torchsde