Compare commits

..

4 Commits

Author SHA1 Message Date
Chenlei Hu
74a17e9460 nit 2025-03-21 17:10:28 -04:00
Chenlei Hu
4a4c546276 Update test 2025-03-21 17:05:52 -04:00
Chenlei Hu
92de68aabd Add REQUIRED_FRONTEND_VERSION prop on node def 2025-03-21 17:04:31 -04:00
Chenlei Hu
e73c78e292 wip 2025-03-21 15:16:43 -04:00
39 changed files with 180 additions and 1071 deletions

View File

@@ -69,8 +69,6 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/)
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
- 3D Models
- [Hunyuan3D 2.0](https://docs.comfy.org/tutorials/3d/hunyuan3D-2)
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- Asynchronous Queue system
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.

View File

@@ -9,14 +9,8 @@ class AppSettings():
self.user_manager = user_manager
def get_settings(self, request):
try:
file = self.user_manager.get_request_user_filepath(
request,
"comfy.settings.json"
)
except KeyError as e:
logging.error("User settings not found.")
raise web.HTTPUnauthorized() from e
request, "comfy.settings.json")
if os.path.isfile(file):
try:
with open(file) as f:

View File

@@ -22,46 +22,28 @@ import app.logger
# The path to the requirements.txt file
req_path = Path(__file__).parents[1] / "requirements.txt"
def frontend_install_warning_message():
"""The warning message to display when the frontend version is not up to date."""
extra = ""
if sys.flags.no_user_site:
extra = "-s "
return f"""
Please install the updated requirements.txt file by running:
{sys.executable} {extra}-m pip install -r {req_path}
return f"Please install the updated requirements.txt file by running:\n{sys.executable} {extra}-m pip install -r {req_path}\n\nThis error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.\n\nIf you are on the portable package you can run: update\\update_comfyui.bat to solve this problem"
This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
If you are on the portable package you can run: update\\update_comfyui.bat to solve this problem
""".strip()
def parse_version(version: str) -> tuple[int, int, int]:
return tuple(map(int, version.split(".")))
def check_frontend_version():
"""Check if the frontend version is up to date."""
def parse_version(version: str) -> tuple[int, int, int]:
return tuple(map(int, version.split(".")))
try:
frontend_version_str = version("comfyui-frontend-package")
frontend_version = parse_version(frontend_version_str)
with open(req_path, "r", encoding="utf-8") as f:
required_frontend = parse_version(f.readline().split("=")[-1])
if frontend_version < required_frontend:
app.logger.log_startup_warning(
f"""
________________________________________________________________________
WARNING WARNING WARNING WARNING WARNING
Installed frontend version {".".join(map(str, frontend_version))} is lower than the recommended version {".".join(map(str, required_frontend))}.
{frontend_install_warning_message()}
________________________________________________________________________
""".strip()
)
app.logger.log_startup_warning("________________________________________________________________________\nWARNING WARNING WARNING WARNING WARNING\n\nInstalled frontend version {} is lower than the recommended version {}.\n\n{}\n________________________________________________________________________".format('.'.join(map(str, frontend_version)), '.'.join(map(str, required_frontend)), frontend_install_warning_message()))
else:
logging.info("ComfyUI frontend version: {}".format(frontend_version_str))
except Exception as e:
@@ -91,6 +73,11 @@ class FrontEndProvider:
owner: str
repo: str
@property
def is_official(self) -> bool:
"""Check if the provider is the default official one."""
return self.owner == "Comfy-Org" and self.repo == "ComfyUI_frontend"
@property
def folder_name(self) -> str:
return f"{self.owner}_{self.repo}"
@@ -161,27 +148,26 @@ def download_release_asset_zip(release: Release, destination_path: str) -> None:
zip_ref.extractall(destination_path)
class FrontendInit(TypedDict):
web_root: str
""" The path to the initialized frontend. """
version: tuple[int, int, int] | None
""" The version of the initialized frontend. None for unrecognized version."""
class FrontendManager:
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
@classmethod
def default_frontend_path(cls) -> str:
def init_default_frontend(cls) -> FrontendInit:
check_frontend_version()
try:
import comfyui_frontend_package
return str(importlib.resources.files(comfyui_frontend_package) / "static")
except ImportError:
logging.error(
f"""
********** ERROR ***********
comfyui-frontend-package is not installed.
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
return FrontendInit(
web_root=str(importlib.resources.files(comfyui_frontend_package) / "static"),
version=parse_version(version("comfyui-frontend-package")),
)
except ImportError:
logging.error(f"\n\n********** ERROR ***********\n\ncomfyui-frontend-package is not installed. {frontend_install_warning_message()}\n********** ERROR **********\n")
sys.exit(-1)
@classmethod
@@ -204,9 +190,7 @@ comfyui-frontend-package is not installed.
return match_result.group(1), match_result.group(2), match_result.group(3)
@classmethod
def init_frontend_unsafe(
cls, version_string: str, provider: Optional[FrontEndProvider] = None
) -> str:
def init_frontend_unsafe(cls, version_string: str, provider: Optional[FrontEndProvider] = None) -> FrontendInit:
"""
Initializes the frontend for the specified version.
@@ -222,26 +206,17 @@ comfyui-frontend-package is not installed.
main error source might be request timeout or invalid URL.
"""
if version_string == DEFAULT_VERSION_STRING:
check_frontend_version()
return cls.default_frontend_path()
return cls.init_default_frontend()
repo_owner, repo_name, version = cls.parse_version_string(version_string)
if version.startswith("v"):
expected_path = str(
Path(cls.CUSTOM_FRONTENDS_ROOT)
/ f"{repo_owner}_{repo_name}"
/ version.lstrip("v")
)
expected_path = str(Path(cls.CUSTOM_FRONTENDS_ROOT) / f"{repo_owner}_{repo_name}" / version.lstrip("v"))
if os.path.exists(expected_path):
logging.info(
f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}"
)
logging.info(f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}")
return expected_path
logging.info(
f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub..."
)
logging.info(f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub...")
provider = provider or FrontEndProvider(repo_owner, repo_name)
release = provider.get_release(version)
@@ -266,10 +241,13 @@ comfyui-frontend-package is not installed.
if not os.listdir(web_root):
os.rmdir(web_root)
return web_root
return FrontendInit(
web_root=web_root,
version=parse_version(semantic_version) if provider.is_official else None,
)
@classmethod
def init_frontend(cls, version_string: str) -> str:
def init_frontend(cls, version_string: str) -> FrontendInit:
"""
Initializes the frontend with the specified version string.
@@ -284,5 +262,4 @@ comfyui-frontend-package is not installed.
except Exception as e:
logging.error("Failed to initialize frontend: %s", e)
logging.info("Falling back to the default frontend.")
check_frontend_version()
return cls.default_frontend_path()
return cls.init_default_frontend()

View File

@@ -79,7 +79,6 @@ fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Stor
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
fpte_group.add_argument("--bf16-text-enc", action="store_true", help="Store text encoder weights in bf16.")
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
@@ -101,7 +100,6 @@ parser.add_argument("--preview-size", type=int, default=512, help="Sets the maxi
cache_group = parser.add_mutually_exclusive_group()
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
@@ -136,9 +134,8 @@ parser.add_argument("--deterministic", action="store_true", help="Make pytorch u
class PerformanceFeature(enum.Enum):
Fp16Accumulation = "fp16_accumulation"
Fp8MatrixMultiplication = "fp8_matrix_mult"
CublasOps = "cublas_ops"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult")
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")

View File

@@ -110,13 +110,9 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
embed_shape = sd["vision_model.embeddings.position_embedding.weight"].shape[0]
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
if embed_shape == 729:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
elif embed_shape == 1024:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
elif embed_shape == 577:
elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
if "multi_modal_projector.linear_1.bias" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
else:

View File

@@ -1,13 +0,0 @@
{
"num_channels": 3,
"hidden_act": "gelu_pytorch_tanh",
"hidden_size": 1152,
"image_size": 512,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 16,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5]
}

View File

@@ -102,13 +102,9 @@ class InputTypeOptions(TypedDict):
default: bool | str | float | int | list | tuple
"""The default value of the widget"""
defaultInput: bool
"""@deprecated in v1.16 frontend. v1.16 frontend allows input socket and widget to co-exist.
- defaultInput on required inputs should be dropped.
- defaultInput on optional inputs should be replaced with forceInput.
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3364
"""
"""Defaults to an input slot rather than a widget"""
forceInput: bool
"""Forces the input to be an input slot rather than a widget even a widget is available for the input type."""
"""`defaultInput` and also don't allow converting to a widget"""
lazy: bool
"""Declares that this input uses lazy evaluation"""
rawLink: bool
@@ -224,6 +220,13 @@ class ComfyNodeABC(ABC):
"""Flags a node as experimental, informing users that it may change or not work as expected."""
DEPRECATED: bool
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
REQUIRED_FRONTEND_VERSION: str | None
"""The minimum version of the ComfyUI frontend required to load this node.
Usage::
REQUIRED_FRONTEND_VERSION = "1.9.7"
"""
@classmethod
@abstractmethod

View File

@@ -1422,101 +1422,3 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (sigmas[i + 1] ** 2 - sigmas[i] ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
old_denoised = denoised
return x
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
'''
SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 2
Arxiv: https://arxiv.org/abs/2305.14267
'''
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
h = t_next - t
h_eta = h * (eta + 1)
s = t + r * h
fac = 1 / (2 * r)
sigma_s = s.neg().exp()
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
noise_coeff_2 = ((-2 * r * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s), noise_sampler(sigma_s, sigmas[i + 1])
# Step 1
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s * s_in, **extra_args)
# Step 2
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = (coeff_2 + 1) * x - coeff_2 * denoised_d
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
return x
@torch.no_grad()
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
'''
SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 3
Arxiv: https://arxiv.org/abs/2305.14267
'''
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
h = t_next - t
h_eta = h * (eta + 1)
s_1 = t + r_1 * h
s_2 = t + r_2 * h
sigma_s_1, sigma_s_2 = s_1.neg().exp(), s_2.neg().exp()
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
noise_coeff_2 = ((-2 * r_1 * h * eta).expm1() - (-2 * r_2 * h * eta).expm1()).sqrt()
noise_coeff_3 = ((-2 * r_2 * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
# Step 1
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
x_3 = (coeff_2 + 1) * x - coeff_2 * denoised + (r_2 / r_1) * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
if inject_noise:
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 3
x = (coeff_3 + 1) * x - coeff_3 * denoised + (1. / r_2) * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
return x

View File

@@ -471,7 +471,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
if skip_reshape:
b, _, _, dim_head = q.shape
tensor_layout = "HND"
tensor_layout="HND"
else:
b, _, dim_head = q.shape
dim_head //= heads
@@ -479,7 +479,7 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
lambda t: t.view(b, -1, heads, dim_head),
(q, k, v),
)
tensor_layout = "NHD"
tensor_layout="NHD"
if mask is not None:
# add a batch dimension if there isn't already one
@@ -489,17 +489,7 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
if mask.ndim == 3:
mask = mask.unsqueeze(1)
try:
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
except Exception as e:
logging.error("Error running sage attention: {}, using pytorch attention instead.".format(e))
if tensor_layout == "NHD":
q, k, v = map(
lambda t: t.transpose(1, 2),
(q, k, v),
)
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape)
if tensor_layout == "HND":
if not skip_output_reshape:
out = (
@@ -847,7 +837,6 @@ class SpatialTransformer(nn.Module):
if not isinstance(context, list):
context = [context] * len(self.transformer_blocks)
b, c, h, w = x.shape
transformer_options["activations_shape"] = list(x.shape)
x_in = x
x = self.norm(x)
if not self.use_linear:
@@ -963,7 +952,6 @@ class SpatialVideoTransformer(SpatialTransformer):
transformer_options={}
) -> torch.Tensor:
_, _, h, w = x.shape
transformer_options["activations_shape"] = list(x.shape)
x_in = x
spatial_context = None
if exists(context):

View File

@@ -1,5 +1,4 @@
import torch
import comfy.utils
def convert_lora_bfl_control(sd): #BFL loras for Flux
@@ -12,13 +11,7 @@ def convert_lora_bfl_control(sd): #BFL loras for Flux
return sd_out
def convert_lora_wan_fun(sd): #Wan Fun loras
return comfy.utils.state_dict_prefix_replace(sd, {"lora_unet__": "lora_unet_"})
def convert_lora(sd):
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd:
return convert_lora_bfl_control(sd)
if "lora_unet__blocks_0_cross_attn_k.lora_down.weight" in sd:
return convert_lora_wan_fun(sd)
return sd

View File

@@ -992,40 +992,30 @@ class WAN21(BaseModel):
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
extra_channels = self.diffusion_model.patch_embedding.weight.shape[1] - noise.shape[1]
if extra_channels == 0:
if self.diffusion_model.patch_embedding.weight.shape[1] == noise.shape[1]:
return None
image = kwargs.get("concat_latent_image", None)
device = kwargs["device"]
if image is None:
shape_image = list(noise.shape)
shape_image[1] = extra_channels
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
image = torch.zeros_like(noise)
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
for i in range(0, image.shape[1], 16):
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
image = self.process_latent_in(image)
image = utils.resize_to_batch_size(image, noise.shape[0])
if not self.image_to_video or extra_channels == image.shape[1]:
if not self.image_to_video:
return image
if image.shape[1] > (extra_channels - 4):
image = image[:, :(extra_channels - 4)]
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None:
mask = torch.zeros_like(noise)[:, :4]
else:
if mask.shape[1] != 4:
mask = torch.mean(mask, dim=1, keepdim=True)
mask = 1.0 - mask
mask = 1.0 - torch.mean(mask, dim=1, keepdim=True)
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
if mask.shape[-3] < noise.shape[-3]:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
if mask.shape[1] == 1:
mask = mask.repeat(1, 4, 1, 1, 1)
mask = utils.resize_to_batch_size(mask, noise.shape[0])

View File

@@ -46,32 +46,6 @@ cpu_state = CPUState.GPU
total_vram = 0
def get_supported_float8_types():
float8_types = []
try:
float8_types.append(torch.float8_e4m3fn)
except:
pass
try:
float8_types.append(torch.float8_e4m3fnuz)
except:
pass
try:
float8_types.append(torch.float8_e5m2)
except:
pass
try:
float8_types.append(torch.float8_e5m2fnuz)
except:
pass
try:
float8_types.append(torch.float8_e8m0fnu)
except:
pass
return float8_types
FLOAT8_TYPES = get_supported_float8_types()
xpu_available = False
torch_version = ""
try:
@@ -727,8 +701,11 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
return torch.float8_e5m2
fp8_dtype = None
if weight_dtype in FLOAT8_TYPES:
try:
if weight_dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
fp8_dtype = weight_dtype
except:
pass
if fp8_dtype is not None:
if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
@@ -823,8 +800,6 @@ def text_encoder_dtype(device=None):
return torch.float8_e5m2
elif args.fp16_text_enc:
return torch.float16
elif args.bf16_text_enc:
return torch.bfloat16
elif args.fp32_text_enc:
return torch.float32
@@ -1237,8 +1212,6 @@ def soft_empty_cache(force=False):
torch.xpu.empty_cache()
elif is_ascend_npu():
torch.npu.empty_cache()
elif is_mlu():
torch.mlu.empty_cache()
elif torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()

View File

@@ -357,25 +357,6 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
return scaled_fp8_op
CUBLAS_IS_AVAILABLE = False
try:
from cublas_ops import CublasLinear
CUBLAS_IS_AVAILABLE = True
except ImportError:
pass
if CUBLAS_IS_AVAILABLE:
class cublas_ops(disable_weight_init):
class Linear(CublasLinear, disable_weight_init.Linear):
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
return super().forward(input)
def forward(self, *args, **kwargs):
return super().forward(*args, **kwargs)
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
if scaled_fp8 is not None:
@@ -388,15 +369,6 @@ def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_
):
return fp8_ops
if (
PerformanceFeature.CublasOps in args.fast and
CUBLAS_IS_AVAILABLE and
weight_dtype == torch.float16 and
(compute_dtype == torch.float16 or compute_dtype is None)
):
logging.info("Using cublas ops")
return cublas_ops
if compute_dtype is None or weight_dtype == compute_dtype:
return disable_weight_init

View File

@@ -48,7 +48,6 @@ def get_all_callbacks(call_type: str, transformer_options: dict, is_model_option
class WrappersMP:
OUTER_SAMPLE = "outer_sample"
PREPARE_SAMPLING = "prepare_sampling"
SAMPLER_SAMPLE = "sampler_sample"
CALC_COND_BATCH = "calc_cond_batch"
APPLY_MODEL = "apply_model"

View File

@@ -106,13 +106,6 @@ def cleanup_additional_models(models):
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
_prepare_sampling,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
)
return executor.execute(model, noise_shape, conds, model_options=model_options)
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
real_model: BaseModel = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)

View File

@@ -710,7 +710,7 @@ KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_c
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
"gradient_estimation", "er_sde", "seeds_2", "seeds_3"]
"gradient_estimation", "er_sde"]
class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):

View File

@@ -265,7 +265,6 @@ class VAE:
self.process_input = lambda image: image * 2.0 - 1.0
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
self.working_dtypes = [torch.bfloat16, torch.float32]
self.disable_offload = False
self.downscale_index_formula = None
self.upscale_index_formula = None
@@ -338,7 +337,6 @@ class VAE:
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.disable_offload = True
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd or "layers.4.layers.1.attn_block.attn.qkv.weight" in sd or "encoder.layers.4.layers.1.attn_block.attn.qkv.weight" in sd: #genmo mochi vae
if "blocks.2.blocks.3.stack.5.weight" in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "decoder."})
@@ -517,7 +515,7 @@ class VAE:
pixel_samples = None
try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
@@ -546,7 +544,7 @@ class VAE:
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
self.throw_exception_if_invalid()
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
dims = samples.ndim - 2
args = {}
if tile_x is not None:
@@ -580,7 +578,7 @@ class VAE:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / max(1, memory_used))
batch_number = max(1, batch_number)
@@ -614,7 +612,7 @@ class VAE:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) # TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
args = {}
if tile_x is not None:

View File

@@ -969,24 +969,12 @@ class WAN21_I2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "i2v",
"in_dim": 36,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21(self, image_to_video=True, device=device)
return out
class WAN21_FunControl2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "i2v",
"in_dim": 48,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21(self, image_to_video=False, device=device)
return out
class Hunyuan3Dv2(supported_models_base.BASE):
unet_config = {
"image_model": "hunyuan3d2",
@@ -1025,6 +1013,6 @@ class Hunyuan3Dv2mini(Hunyuan3Dv2):
latent_format = latent_formats.Hunyuan3Dv2mini
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, Hunyuan3Dv2mini, Hunyuan3Dv2]
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, Hunyuan3Dv2mini, Hunyuan3Dv2]
models += [SVD_img2vid]

View File

@@ -316,156 +316,3 @@ class LRUCache(BasicCache):
self.children[cache_key].append(self.cache_key_set.get_data_key(child_id))
return self
class DependencyAwareCache(BasicCache):
"""
A cache implementation that tracks dependencies between nodes and manages
their execution and caching accordingly. It extends the BasicCache class.
Nodes are removed from this cache once all of their descendants have been
executed.
"""
def __init__(self, key_class):
"""
Initialize the DependencyAwareCache.
Args:
key_class: The class used for generating cache keys.
"""
super().__init__(key_class)
self.descendants = {} # Maps node_id -> set of descendant node_ids
self.ancestors = {} # Maps node_id -> set of ancestor node_ids
self.executed_nodes = set() # Tracks nodes that have been executed
def set_prompt(self, dynprompt, node_ids, is_changed_cache):
"""
Clear the entire cache and rebuild the dependency graph.
Args:
dynprompt: The dynamic prompt object containing node information.
node_ids: List of node IDs to initialize the cache for.
is_changed_cache: Flag indicating if the cache has changed.
"""
# Clear all existing cache data
self.cache.clear()
self.subcaches.clear()
self.descendants.clear()
self.ancestors.clear()
self.executed_nodes.clear()
# Call the parent method to initialize the cache with the new prompt
super().set_prompt(dynprompt, node_ids, is_changed_cache)
# Rebuild the dependency graph
self._build_dependency_graph(dynprompt, node_ids)
def _build_dependency_graph(self, dynprompt, node_ids):
"""
Build the dependency graph for all nodes.
Args:
dynprompt: The dynamic prompt object containing node information.
node_ids: List of node IDs to build the graph for.
"""
self.descendants.clear()
self.ancestors.clear()
for node_id in node_ids:
self.descendants[node_id] = set()
self.ancestors[node_id] = set()
for node_id in node_ids:
inputs = dynprompt.get_node(node_id)["inputs"]
for input_data in inputs.values():
if is_link(input_data): # Check if the input is a link to another node
ancestor_id = input_data[0]
self.descendants[ancestor_id].add(node_id)
self.ancestors[node_id].add(ancestor_id)
def set(self, node_id, value):
"""
Mark a node as executed and store its value in the cache.
Args:
node_id: The ID of the node to store.
value: The value to store for the node.
"""
self._set_immediate(node_id, value)
self.executed_nodes.add(node_id)
self._cleanup_ancestors(node_id)
def get(self, node_id):
"""
Retrieve the cached value for a node.
Args:
node_id: The ID of the node to retrieve.
Returns:
The cached value for the node.
"""
return self._get_immediate(node_id)
def ensure_subcache_for(self, node_id, children_ids):
"""
Ensure a subcache exists for a node and update dependencies.
Args:
node_id: The ID of the parent node.
children_ids: List of child node IDs to associate with the parent node.
Returns:
The subcache object for the node.
"""
subcache = super()._ensure_subcache(node_id, children_ids)
for child_id in children_ids:
self.descendants[node_id].add(child_id)
self.ancestors[child_id].add(node_id)
return subcache
def _cleanup_ancestors(self, node_id):
"""
Check if ancestors of a node can be removed from the cache.
Args:
node_id: The ID of the node whose ancestors are to be checked.
"""
for ancestor_id in self.ancestors.get(node_id, []):
if ancestor_id in self.executed_nodes:
# Remove ancestor if all its descendants have been executed
if all(descendant in self.executed_nodes for descendant in self.descendants[ancestor_id]):
self._remove_node(ancestor_id)
def _remove_node(self, node_id):
"""
Remove a node from the cache.
Args:
node_id: The ID of the node to remove.
"""
cache_key = self.cache_key_set.get_data_key(node_id)
if cache_key in self.cache:
del self.cache[cache_key]
subcache_key = self.cache_key_set.get_subcache_key(node_id)
if subcache_key in self.subcaches:
del self.subcaches[subcache_key]
def clean_unused(self):
"""
Clean up unused nodes. This is a no-op for this cache implementation.
"""
pass
def recursive_debug_dump(self):
"""
Dump the cache and dependency graph for debugging.
Returns:
A list containing the cache state and dependency graph.
"""
result = super().recursive_debug_dump()
result.append({
"descendants": self.descendants,
"ancestors": self.ancestors,
"executed_nodes": list(self.executed_nodes),
})
return result

View File

@@ -1,45 +0,0 @@
import torch
# https://github.com/WeichenFan/CFG-Zero-star
def optimized_scale(positive, negative):
positive_flat = positive.reshape(positive.shape[0], -1)
negative_flat = negative.reshape(negative.shape[0], -1)
# Calculate dot production
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
# Squared norm of uncondition
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
# st_star = v_cond^T * v_uncond / ||v_uncond||^2
st_star = dot_product / squared_norm
return st_star.reshape([positive.shape[0]] + [1] * (positive.ndim - 1))
class CFGZeroStar:
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL",),
}}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("patched_model",)
FUNCTION = "patch"
CATEGORY = "advanced/guidance"
def patch(self, model):
m = model.clone()
def cfg_zero_star(args):
guidance_scale = args['cond_scale']
x = args['input']
cond_p = args['cond_denoised']
uncond_p = args['uncond_denoised']
out = args["denoised"]
alpha = optimized_scale(x - cond_p, x - uncond_p)
return out + uncond_p * (alpha - 1.0) + guidance_scale * uncond_p * (1.0 - alpha)
m.set_model_sampler_post_cfg_function(cfg_zero_star)
return (m, )
NODE_CLASS_MAPPINGS = {
"CFGZeroStar": CFGZeroStar
}

View File

@@ -209,196 +209,6 @@ def voxel_to_mesh(voxels, threshold=0.5, device=None):
vertices = torch.fliplr(vertices)
return vertices, faces
def voxel_to_mesh_surfnet(voxels, threshold=0.5, device=None):
if device is None:
device = torch.device("cpu")
voxels = voxels.to(device)
D, H, W = voxels.shape
padded = torch.nn.functional.pad(voxels, (1, 1, 1, 1, 1, 1), 'constant', 0)
z, y, x = torch.meshgrid(
torch.arange(D, device=device),
torch.arange(H, device=device),
torch.arange(W, device=device),
indexing='ij'
)
cell_positions = torch.stack([z.flatten(), y.flatten(), x.flatten()], dim=1)
corner_offsets = torch.tensor([
[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0],
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]
], device=device)
corner_values = torch.zeros((cell_positions.shape[0], 8), device=device)
for c, (dz, dy, dx) in enumerate(corner_offsets):
corner_values[:, c] = padded[
cell_positions[:, 0] + dz,
cell_positions[:, 1] + dy,
cell_positions[:, 2] + dx
]
corner_signs = corner_values > threshold
has_inside = torch.any(corner_signs, dim=1)
has_outside = torch.any(~corner_signs, dim=1)
contains_surface = has_inside & has_outside
active_cells = cell_positions[contains_surface]
active_signs = corner_signs[contains_surface]
active_values = corner_values[contains_surface]
if active_cells.shape[0] == 0:
return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)
edges = torch.tensor([
[0, 1], [0, 2], [0, 4], [1, 3],
[1, 5], [2, 3], [2, 6], [3, 7],
[4, 5], [4, 6], [5, 7], [6, 7]
], device=device)
cell_vertices = {}
progress = comfy.utils.ProgressBar(100)
for edge_idx, (e1, e2) in enumerate(edges):
progress.update(1)
crossing = active_signs[:, e1] != active_signs[:, e2]
if not crossing.any():
continue
cell_indices = torch.nonzero(crossing, as_tuple=True)[0]
v1 = active_values[cell_indices, e1]
v2 = active_values[cell_indices, e2]
t = torch.zeros_like(v1, device=device)
denom = v2 - v1
valid = denom != 0
t[valid] = (threshold - v1[valid]) / denom[valid]
t[~valid] = 0.5
p1 = corner_offsets[e1].float()
p2 = corner_offsets[e2].float()
intersection = p1.unsqueeze(0) + t.unsqueeze(1) * (p2.unsqueeze(0) - p1.unsqueeze(0))
for i, point in zip(cell_indices.tolist(), intersection):
if i not in cell_vertices:
cell_vertices[i] = []
cell_vertices[i].append(point)
# Calculate the final vertices as the average of intersection points for each cell
vertices = []
vertex_lookup = {}
vert_progress_mod = round(len(cell_vertices)/50)
for i, points in cell_vertices.items():
if not i % vert_progress_mod:
progress.update(1)
if points:
vertex = torch.stack(points).mean(dim=0)
vertex = vertex + active_cells[i].float()
vertex_lookup[tuple(active_cells[i].tolist())] = len(vertices)
vertices.append(vertex)
if not vertices:
return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)
final_vertices = torch.stack(vertices)
inside_corners_mask = active_signs
outside_corners_mask = ~active_signs
inside_counts = inside_corners_mask.sum(dim=1, keepdim=True).float()
outside_counts = outside_corners_mask.sum(dim=1, keepdim=True).float()
inside_pos = torch.zeros((active_cells.shape[0], 3), device=device)
outside_pos = torch.zeros((active_cells.shape[0], 3), device=device)
for i in range(8):
mask_inside = inside_corners_mask[:, i].unsqueeze(1)
mask_outside = outside_corners_mask[:, i].unsqueeze(1)
inside_pos += corner_offsets[i].float().unsqueeze(0) * mask_inside
outside_pos += corner_offsets[i].float().unsqueeze(0) * mask_outside
inside_pos /= inside_counts
outside_pos /= outside_counts
gradients = inside_pos - outside_pos
pos_dirs = torch.tensor([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
], device=device)
cross_products = [
torch.linalg.cross(pos_dirs[i].float(), pos_dirs[j].float())
for i in range(3) for j in range(i+1, 3)
]
faces = []
all_keys = set(vertex_lookup.keys())
face_progress_mod = round(len(active_cells)/38*3)
for pair_idx, (i, j) in enumerate([(0,1), (0,2), (1,2)]):
dir_i = pos_dirs[i]
dir_j = pos_dirs[j]
cross_product = cross_products[pair_idx]
ni_positions = active_cells + dir_i
nj_positions = active_cells + dir_j
diag_positions = active_cells + dir_i + dir_j
alignments = torch.matmul(gradients, cross_product)
valid_quads = []
quad_indices = []
for idx, active_cell in enumerate(active_cells):
if not idx % face_progress_mod:
progress.update(1)
cell_key = tuple(active_cell.tolist())
ni_key = tuple(ni_positions[idx].tolist())
nj_key = tuple(nj_positions[idx].tolist())
diag_key = tuple(diag_positions[idx].tolist())
if cell_key in all_keys and ni_key in all_keys and nj_key in all_keys and diag_key in all_keys:
v0 = vertex_lookup[cell_key]
v1 = vertex_lookup[ni_key]
v2 = vertex_lookup[nj_key]
v3 = vertex_lookup[diag_key]
valid_quads.append((v0, v1, v2, v3))
quad_indices.append(idx)
for q_idx, (v0, v1, v2, v3) in enumerate(valid_quads):
cell_idx = quad_indices[q_idx]
if alignments[cell_idx] > 0:
faces.append(torch.tensor([v0, v1, v3], device=device, dtype=torch.long))
faces.append(torch.tensor([v0, v3, v2], device=device, dtype=torch.long))
else:
faces.append(torch.tensor([v0, v3, v1], device=device, dtype=torch.long))
faces.append(torch.tensor([v0, v2, v3], device=device, dtype=torch.long))
if faces:
faces = torch.stack(faces)
else:
faces = torch.zeros((0, 3), dtype=torch.long, device=device)
v_min = 0
v_max = max(D, H, W)
final_vertices = final_vertices - (v_min + v_max) / 2
scale = (v_max - v_min) / 2
if scale > 0:
final_vertices = final_vertices / scale
final_vertices = torch.fliplr(final_vertices)
return final_vertices, faces
class MESH:
def __init__(self, vertices, faces):
@@ -427,34 +237,6 @@ class VoxelToMeshBasic:
return (MESH(torch.stack(vertices), torch.stack(faces)), )
class VoxelToMesh:
@classmethod
def INPUT_TYPES(s):
return {"required": {"voxel": ("VOXEL", ),
"algorithm": (["surface net", "basic"], ),
"threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("MESH",)
FUNCTION = "decode"
CATEGORY = "3d"
def decode(self, voxel, algorithm, threshold):
vertices = []
faces = []
if algorithm == "basic":
mesh_function = voxel_to_mesh
elif algorithm == "surface net":
mesh_function = voxel_to_mesh_surfnet
for x in voxel.data:
v, f = mesh_function(x, threshold=threshold, device=None)
vertices.append(v)
faces.append(f)
return (MESH(torch.stack(vertices), torch.stack(faces)), )
def save_glb(vertices, faces, filepath, metadata=None):
"""
@@ -462,7 +244,7 @@ def save_glb(vertices, faces, filepath, metadata=None):
Parameters:
vertices: torch.Tensor of shape (N, 3) - The vertex coordinates
faces: torch.Tensor of shape (M, 3) - The face indices (triangle faces)
faces: torch.Tensor of shape (M, 4) or (M, 3) - The face indices (quad or triangle faces)
filepath: str - Output filepath (should end with .glb)
"""
@@ -629,6 +411,5 @@ NODE_CLASS_MAPPINGS = {
"Hunyuan3Dv2ConditioningMultiView": Hunyuan3Dv2ConditioningMultiView,
"VAEDecodeHunyuan3D": VAEDecodeHunyuan3D,
"VoxelToMeshBasic": VoxelToMeshBasic,
"VoxelToMesh": VoxelToMesh,
"SaveGLB": SaveGLB,
}

View File

@@ -21,8 +21,8 @@ class Load3D():
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
}}
RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "IMAGE")
RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "lineart")
RETURN_TYPES = ("IMAGE", "MASK", "STRING")
RETURN_NAMES = ("image", "mask", "mesh_path")
FUNCTION = "process"
EXPERIMENTAL = True
@@ -32,16 +32,12 @@ class Load3D():
def process(self, model_file, image, **kwargs):
image_path = folder_paths.get_annotated_filepath(image['image'])
mask_path = folder_paths.get_annotated_filepath(image['mask'])
normal_path = folder_paths.get_annotated_filepath(image['normal'])
lineart_path = folder_paths.get_annotated_filepath(image['lineart'])
load_image_node = nodes.LoadImage()
output_image, ignore_mask = load_image_node.load_image(image=image_path)
ignore_image, output_mask = load_image_node.load_image(image=mask_path)
normal_image, ignore_mask2 = load_image_node.load_image(image=normal_path)
lineart_image, ignore_mask3 = load_image_node.load_image(image=lineart_path)
return output_image, output_mask, model_file, normal_image, lineart_image
return output_image, output_mask, model_file,
class Load3DAnimation():
@classmethod
@@ -59,8 +55,8 @@ class Load3DAnimation():
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
}}
RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE")
RETURN_NAMES = ("image", "mask", "mesh_path", "normal")
RETURN_TYPES = ("IMAGE", "MASK", "STRING")
RETURN_NAMES = ("image", "mask", "mesh_path")
FUNCTION = "process"
EXPERIMENTAL = True
@@ -70,14 +66,12 @@ class Load3DAnimation():
def process(self, model_file, image, **kwargs):
image_path = folder_paths.get_annotated_filepath(image['image'])
mask_path = folder_paths.get_annotated_filepath(image['mask'])
normal_path = folder_paths.get_annotated_filepath(image['normal'])
load_image_node = nodes.LoadImage()
output_image, ignore_mask = load_image_node.load_image(image=image_path)
ignore_image, output_mask = load_image_node.load_image(image=mask_path)
normal_image, ignore_mask2 = load_image_node.load_image(image=normal_path)
return output_image, output_mask, model_file, normal_image
return output_image, output_mask, model_file,
class Preview3D():
@classmethod

View File

@@ -446,6 +446,7 @@ class LTXVPreprocess:
CATEGORY = "image"
def preprocess(self, image, img_compression):
if img_compression > 0:
output_images = []
for i in range(image.shape[0]):
output_images.append(preprocess(image[i], img_compression))

View File

@@ -2,7 +2,6 @@ import numpy as np
import scipy.ndimage
import torch
import comfy.utils
import node_helpers
from nodes import MAX_RESOLUTION
@@ -88,7 +87,6 @@ class ImageCompositeMasked:
CATEGORY = "image"
def composite(self, destination, source, x, y, resize_source, mask = None):
destination, source = node_helpers.image_alpha_fix(destination, source)
destination = destination.clone().movedim(-1, 1)
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
return (output,)

View File

@@ -244,30 +244,6 @@ class ModelMergeCosmos14B(comfy_extras.nodes_model_merging.ModelMergeBlocks):
return {"required": arg_dict}
class ModelMergeWAN2_1(comfy_extras.nodes_model_merging.ModelMergeBlocks):
CATEGORY = "advanced/model_merging/model_specific"
DESCRIPTION = "1.3B model has 30 blocks, 14B model has 40 blocks. Image to video model has the extra img_emb."
@classmethod
def INPUT_TYPES(s):
arg_dict = { "model1": ("MODEL",),
"model2": ("MODEL",)}
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
arg_dict["patch_embedding."] = argument
arg_dict["time_embedding."] = argument
arg_dict["time_projection."] = argument
arg_dict["text_embedding."] = argument
arg_dict["img_emb."] = argument
for i in range(40):
arg_dict["blocks.{}.".format(i)] = argument
arg_dict["head."] = argument
return {"required": arg_dict}
NODE_CLASS_MAPPINGS = {
"ModelMergeSD1": ModelMergeSD1,
"ModelMergeSD2": ModelMergeSD1, #SD1 and SD2 have the same blocks
@@ -280,5 +256,4 @@ NODE_CLASS_MAPPINGS = {
"ModelMergeLTXV": ModelMergeLTXV,
"ModelMergeCosmos7B": ModelMergeCosmos7B,
"ModelMergeCosmos14B": ModelMergeCosmos14B,
"ModelMergeWAN2_1": ModelMergeWAN2_1,
}

View File

@@ -1,56 +0,0 @@
# from https://github.com/bebebe666/OptimalSteps
import numpy as np
import torch
def loglinear_interp(t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
return interped_ys
NOISE_LEVELS = {"FLUX": [0.9968, 0.9886, 0.9819, 0.975, 0.966, 0.9471, 0.9158, 0.8287, 0.5512, 0.2808, 0.001],
"Wan":[1.0, 0.997, 0.995, 0.993, 0.991, 0.989, 0.987, 0.985, 0.98, 0.975, 0.973, 0.968, 0.96, 0.946, 0.927, 0.902, 0.864, 0.776, 0.539, 0.208, 0.001],
}
class OptimalStepsScheduler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model_type": (["FLUX", "Wan"], ),
"steps": ("INT", {"default": 20, "min": 3, "max": 1000}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("SIGMAS",)
CATEGORY = "sampling/custom_sampling/schedulers"
FUNCTION = "get_sigmas"
def get_sigmas(self, model_type, steps, denoise):
total_steps = steps
if denoise < 1.0:
if denoise <= 0.0:
return (torch.FloatTensor([]),)
total_steps = round(steps * denoise)
sigmas = NOISE_LEVELS[model_type][:]
if (steps + 1) != len(sigmas):
sigmas = loglinear_interp(sigmas, steps + 1)
sigmas = sigmas[-(total_steps + 1):]
sigmas[-1] = 0
return (torch.FloatTensor(sigmas), )
NODE_CLASS_MAPPINGS = {
"OptimalStepsScheduler": OptimalStepsScheduler,
}

View File

@@ -6,7 +6,7 @@ import math
import comfy.utils
import comfy.model_management
import node_helpers
class Blend:
def __init__(self):
@@ -34,7 +34,6 @@ class Blend:
CATEGORY = "image/postprocessing"
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
image1, image2 = node_helpers.image_alpha_fix(image1, image2)
image2 = image2.to(image1.device)
if image1.shape != image2.shape:
image2 = image2.permute(0, 3, 1, 2)

View File

@@ -3,7 +3,6 @@ import node_helpers
import torch
import comfy.model_management
import comfy.utils
import comfy.latent_formats
class WanImageToVideo:
@@ -50,110 +49,6 @@ class WanImageToVideo:
return (positive, negative, out_latent)
class WanFunControlToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE", ),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"start_image": ("IMAGE", ),
"control_video": ("IMAGE", ),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None, control_video=None):
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = comfy.latent_formats.Wan21().process_out(concat_latent)
concat_latent = concat_latent.repeat(1, 2, 1, 1, 1)
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(start_image[:, :, :, :3])
concat_latent[:,16:,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
if control_video is not None:
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(control_video[:, :, :, :3])
concat_latent[:,:16,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent})
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
out_latent = {}
out_latent["samples"] = latent
return (positive, negative, out_latent)
class WanFunInpaintToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE", ),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"start_image": ("IMAGE", ),
"end_image": ("IMAGE", ),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_output=None):
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
if end_image is not None:
end_image = comfy.utils.common_upscale(end_image[-length:].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
image = torch.ones((length, height, width, 3)) * 0.5
mask = torch.ones((1, 1, latent.shape[2] * 4, latent.shape[-2], latent.shape[-1]))
if start_image is not None:
image[:start_image.shape[0]] = start_image
mask[:, :, :start_image.shape[0] + 3] = 0.0
if end_image is not None:
image[-end_image.shape[0]:] = end_image
mask[:, :, -end_image.shape[0]:] = 0.0
concat_latent_image = vae.encode(image[:, :, :, :3])
mask = mask.view(1, mask.shape[2] // 4, 4, mask.shape[3], mask.shape[4]).transpose(1, 2)
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
out_latent = {}
out_latent["samples"] = latent
return (positive, negative, out_latent)
NODE_CLASS_MAPPINGS = {
"WanImageToVideo": WanImageToVideo,
"WanFunControlToVideo": WanFunControlToVideo,
"WanFunInpaintToVideo": WanFunInpaintToVideo,
}

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.28"
__version__ = "0.3.26"

View File

@@ -15,7 +15,7 @@ import nodes
import comfy.model_management
from comfy_execution.graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker
from comfy_execution.graph_utils import is_link, GraphBuilder
from comfy_execution.caching import HierarchicalCache, LRUCache, DependencyAwareCache, CacheKeySetInputSignature, CacheKeySetID
from comfy_execution.caching import HierarchicalCache, LRUCache, CacheKeySetInputSignature, CacheKeySetID
from comfy_execution.validation import validate_node_input
class ExecutionResult(Enum):
@@ -59,45 +59,27 @@ class IsChangedCache:
self.is_changed[node_id] = node["is_changed"]
return self.is_changed[node_id]
class CacheType(Enum):
CLASSIC = 0
LRU = 1
DEPENDENCY_AWARE = 2
class CacheSet:
def __init__(self, cache_type=None, cache_size=None):
if cache_type == CacheType.DEPENDENCY_AWARE:
self.init_dependency_aware_cache()
logging.info("Disabling intermediate node cache.")
elif cache_type == CacheType.LRU:
if cache_size is None:
cache_size = 0
self.init_lru_cache(cache_size)
logging.info("Using LRU cache")
else:
def __init__(self, lru_size=None):
if lru_size is None or lru_size == 0:
self.init_classic_cache()
else:
self.init_lru_cache(lru_size)
self.all = [self.outputs, self.ui, self.objects]
# Useful for those with ample RAM/VRAM -- allows experimenting without
# blowing away the cache every time
def init_lru_cache(self, cache_size):
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.objects = HierarchicalCache(CacheKeySetID)
# Performs like the old cache -- dump data ASAP
def init_classic_cache(self):
self.outputs = HierarchicalCache(CacheKeySetInputSignature)
self.ui = HierarchicalCache(CacheKeySetInputSignature)
self.objects = HierarchicalCache(CacheKeySetID)
def init_lru_cache(self, cache_size):
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.objects = HierarchicalCache(CacheKeySetID)
# only hold cached items while the decendents have not executed
def init_dependency_aware_cache(self):
self.outputs = DependencyAwareCache(CacheKeySetInputSignature)
self.ui = DependencyAwareCache(CacheKeySetInputSignature)
self.objects = DependencyAwareCache(CacheKeySetID)
def recursive_debug_dump(self):
result = {
"outputs": self.outputs.recursive_debug_dump(),
@@ -432,14 +414,13 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
return (ExecutionResult.SUCCESS, None, None)
class PromptExecutor:
def __init__(self, server, cache_type=False, cache_size=None):
self.cache_size = cache_size
self.cache_type = cache_type
def __init__(self, server, lru_size=None):
self.lru_size = lru_size
self.server = server
self.reset()
def reset(self):
self.caches = CacheSet(cache_type=self.cache_type, cache_size=self.cache_size)
self.caches = CacheSet(self.lru_size)
self.status_messages = []
self.success = True
@@ -794,7 +775,7 @@ def validate_prompt(prompt):
"details": f"Node ID '#{x}'",
"extra_info": {}
}
return (False, error, [], {})
return (False, error, [], [])
class_type = prompt[x]['class_type']
class_ = nodes.NODE_CLASS_MAPPINGS.get(class_type, None)
@@ -805,7 +786,7 @@ def validate_prompt(prompt):
"details": f"Node ID '#{x}'",
"extra_info": {}
}
return (False, error, [], {})
return (False, error, [], [])
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE is True:
outputs.add(x)
@@ -817,7 +798,7 @@ def validate_prompt(prompt):
"details": "",
"extra_info": {}
}
return (False, error, [], {})
return (False, error, [], [])
good_outputs = set()
errors = []

View File

@@ -85,7 +85,6 @@ cache_helper = CacheHelper()
extension_mimetypes_cache = {
"webp" : "image",
"fbx" : "model",
}
def map_legacy(folder_name: str) -> str:
@@ -141,14 +140,11 @@ def get_directory_by_type(type_name: str) -> str | None:
return get_input_directory()
return None
def filter_files_content_types(files: list[str], content_types: Literal["image", "video", "audio", "model"]) -> list[str]:
def filter_files_content_types(files: list[str], content_types: Literal["image", "video", "audio"]) -> list[str]:
"""
Example:
files = os.listdir(folder_paths.get_input_directory())
videos = filter_files_content_types(files, ["video"])
Note:
- 'model' in MIME context refers to 3D models, not files containing trained weights and parameters
filter_files_content_types(files, ["image", "audio", "video"])
"""
global extension_mimetypes_cache
result = []

10
main.py
View File

@@ -10,7 +10,6 @@ from app.logger import setup_logger
import itertools
import utils.extra_config
import logging
import sys
if __name__ == "__main__":
#NOTE: These do not do anything on core ComfyUI which should already have no communication with the internet, they are for custom nodes.
@@ -157,13 +156,7 @@ def cuda_malloc_warning():
def prompt_worker(q, server_instance):
current_time: float = 0.0
cache_type = execution.CacheType.CLASSIC
if args.cache_lru > 0:
cache_type = execution.CacheType.LRU
elif args.cache_none:
cache_type = execution.CacheType.DEPENDENCY_AWARE
e = execution.PromptExecutor(server_instance, cache_type=cache_type, cache_size=args.cache_lru)
e = execution.PromptExecutor(server_instance, lru_size=args.cache_lru)
last_gc_collect = 0
need_gc = False
gc_collect_interval = 10.0
@@ -302,7 +295,6 @@ def start_comfyui(asyncio_loop=None):
if __name__ == "__main__":
# Running directly, just start ComfyUI.
logging.info("Python version: {}".format(sys.version))
logging.info("ComfyUI version: {}".format(comfyui_version.__version__))
event_loop, _, start_all_func = start_comfyui()

View File

@@ -44,11 +44,3 @@ def string_to_torch_dtype(string):
return torch.float16
if string == "bf16":
return torch.bfloat16
def image_alpha_fix(destination, source):
if destination.shape[-1] < source.shape[-1]:
source = source[...,:destination.shape[-1]]
elif destination.shape[-1] > source.shape[-1]:
destination = torch.nn.functional.pad(destination, (0, 1))
destination[..., -1] = 1.0
return destination, source

View File

@@ -786,8 +786,6 @@ class ControlNetLoader:
def load_controlnet(self, control_net_name):
controlnet_path = folder_paths.get_full_path_or_raise("controlnet", control_net_name)
controlnet = comfy.controlnet.load_controlnet(controlnet_path)
if controlnet is None:
raise RuntimeError("ERROR: controlnet file is invalid and does not contain a valid controlnet model.")
return (controlnet,)
class DiffControlNetLoader:
@@ -1008,8 +1006,6 @@ class CLIPVisionLoader:
def load_clip(self, clip_name):
clip_path = folder_paths.get_full_path_or_raise("clip_vision", clip_name)
clip_vision = comfy.clip_vision.load(clip_path)
if clip_vision is None:
raise RuntimeError("ERROR: clip vision file is invalid and does not contain a valid vision model.")
return (clip_vision,)
class CLIPVisionEncode:
@@ -1654,7 +1650,6 @@ class LoadImage:
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
files = folder_paths.filter_files_content_types(files, ["image"])
return {"required":
{"image": (sorted(files), {"image_upload": True})},
}
@@ -1693,9 +1688,6 @@ class LoadImage:
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
elif i.mode == 'P' and 'transparency' in i.info:
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
output_images.append(image)
@@ -2131,25 +2123,21 @@ def get_module_name(module_path: str) -> str:
def load_custom_node(module_path: str, ignore=set(), module_parent="custom_nodes") -> bool:
module_name = get_module_name(module_path)
module_name = os.path.basename(module_path)
if os.path.isfile(module_path):
sp = os.path.splitext(module_path)
module_name = sp[0]
sys_module_name = module_name
elif os.path.isdir(module_path):
sys_module_name = module_path.replace(".", "_x_")
try:
logging.debug("Trying to load custom node {}".format(module_path))
if os.path.isfile(module_path):
module_spec = importlib.util.spec_from_file_location(sys_module_name, module_path)
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
module_dir = os.path.split(module_path)[0]
else:
module_spec = importlib.util.spec_from_file_location(sys_module_name, os.path.join(module_path, "__init__.py"))
module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
module_dir = module_path
module = importlib.util.module_from_spec(module_spec)
sys.modules[sys_module_name] = module
sys.modules[module_name] = module
module_spec.loader.exec_module(module)
LOADED_MODULE_DIRS[module_name] = os.path.abspath(module_dir)
@@ -2279,8 +2267,6 @@ def init_builtin_extra_nodes():
"nodes_lotus.py",
"nodes_hunyuan3d.py",
"nodes_primitive.py",
"nodes_cfg.py",
"nodes_optimalsteps.py"
]
import_failed = []

View File

@@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.3.28"
version = "0.3.26"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.9"

View File

@@ -1,4 +1,4 @@
comfyui-frontend-package==1.15.13
comfyui-frontend-package==1.14.5
torch
torchsde
torchvision

View File

@@ -1,3 +1,4 @@
from __future__ import annotations
import os
import sys
import asyncio
@@ -24,11 +25,12 @@ import logging
import mimetypes
from comfy.cli_args import args
from comfy.comfy_types.node_typing import ComfyNodeABC
import comfy.utils
import comfy.model_management
import node_helpers
from comfyui_version import __version__
from app.frontend_management import FrontendManager
from app.frontend_management import FrontendInit, FrontendManager, parse_version
from app.user_manager import UserManager
from app.model_manager import ModelFileManager
from app.custom_node_manager import CustomNodeManager
@@ -48,7 +50,7 @@ async def send_socket_catch_exception(function, message):
@web.middleware
async def cache_control(request: web.Request, handler):
response: web.Response = await handler(request)
if request.path.endswith('.js') or request.path.endswith('.css') or request.path.endswith('index.json'):
if request.path.endswith('.js') or request.path.endswith('.css'):
response.headers.setdefault('Cache-Control', 'no-cache')
return response
@@ -146,6 +148,11 @@ def create_origin_only_middleware():
return origin_only_middleware
class PromptServer():
web_root: str
"""The path to the initialized frontend assets."""
frontend_version: tuple[int, int, int] | None = None
"""The version of the initialized frontend. None for unrecognized version."""
def __init__(self, loop):
PromptServer.instance = self
@@ -176,12 +183,19 @@ class PromptServer():
max_upload_size = round(args.max_upload_size * 1024 * 1024)
self.app = web.Application(client_max_size=max_upload_size, middlewares=middlewares)
self.sockets = dict()
self.web_root = (
FrontendManager.init_frontend(args.front_end_version)
if args.front_end_root is None
else args.front_end_root
if args.front_end_root:
frontend_init = FrontendInit(
web_root=args.front_end_root,
version=None,
)
else:
frontend_init = FrontendManager.init_frontend(args.front_end_version)
self.frontend_version = frontend_init["version"]
self.web_root = frontend_init["web_root"]
logging.info(f"[Prompt Server] web root: {self.web_root}")
routes = web.RouteTableDef()
self.routes = routes
self.last_node_id = None
@@ -587,6 +601,9 @@ class PromptServer():
with folder_paths.cache_helper:
out = {}
for x in nodes.NODE_CLASS_MAPPINGS:
if not self.node_is_supported(x):
continue
try:
out[x] = node_info(x)
except Exception:
@@ -598,7 +615,11 @@ class PromptServer():
async def get_object_info_node(request):
node_class = request.match_info.get("node_class", None)
out = {}
if (node_class is not None) and (node_class in nodes.NODE_CLASS_MAPPINGS):
if (
node_class is not None
and node_class in nodes.NODE_CLASS_MAPPINGS
and self.node_is_supported(node_class)
):
out[node_class] = node_info(node_class)
return web.json_response(out)
@@ -657,13 +678,7 @@ class PromptServer():
logging.warning("invalid prompt: {}".format(valid[1]))
return web.json_response({"error": valid[1], "node_errors": valid[3]}, status=400)
else:
error = {
"type": "no_prompt",
"message": "No prompt provided",
"details": "No prompt provided",
"extra_info": {}
}
return web.json_response({"error": error, "node_errors": {}}, status=400)
return web.json_response({"error": "no prompt", "node_errors": []}, status=400)
@routes.post("/queue")
async def post_queue(request):
@@ -869,3 +884,15 @@ class PromptServer():
logging.warning(traceback.format_exc())
return json_data
def node_is_supported(self, node_class: ComfyNodeABC) -> bool:
"""Check if the node is supported by the frontend."""
# For unrecognized frontend version, we assume the node is supported.
if self.frontend_version is None:
return True
# Check if the node is supported by the frontend.
if node_class.REQUIRED_FRONTEND_VERSION is None:
return True
return parse_version(node_class.REQUIRED_FRONTEND_VERSION) <= self.frontend_version

View File

@@ -69,8 +69,10 @@ def test_get_release_invalid_version(mock_provider):
def test_init_frontend_default():
version_string = DEFAULT_VERSION_STRING
frontend_path = FrontendManager.init_frontend(version_string)
assert frontend_path == FrontendManager.default_frontend_path()
frontend_init = FrontendManager.init_frontend(version_string)
assert isinstance(frontend_init, dict)
assert "web_root" in frontend_init
assert "version" in frontend_init
def test_init_frontend_invalid_version():
@@ -138,37 +140,47 @@ def test_parse_version_string_invalid():
def test_init_frontend_default_with_mocks():
# Arrange
version_string = DEFAULT_VERSION_STRING
mock_path = "/mocked/path"
mock_version = (1, 0, 0)
# Act
with (
patch("app.frontend_management.check_frontend_version") as mock_check,
patch.object(
FrontendManager, "default_frontend_path", return_value="/mocked/path"
FrontendManager,
"init_default_frontend",
return_value={"web_root": mock_path, "version": mock_version},
),
):
frontend_path = FrontendManager.init_frontend(version_string)
frontend_init = FrontendManager.init_frontend(version_string)
# Assert
assert frontend_path == "/mocked/path"
mock_check.assert_called_once()
assert frontend_init["web_root"] == mock_path
assert frontend_init["version"] == mock_version
mock_check.assert_not_called() # check_frontend_version is now called inside init_default_frontend
def test_init_frontend_fallback_on_error():
# Arrange
version_string = "test-owner/test-repo@1.0.0"
mock_path = "/default/path"
mock_version = (1, 0, 0)
# Act
with (
patch.object(
FrontendManager, "init_frontend_unsafe", side_effect=Exception("Test error")
FrontendManager,
"init_frontend_unsafe",
side_effect=Exception("Test error")
),
patch("app.frontend_management.check_frontend_version") as mock_check,
patch.object(
FrontendManager, "default_frontend_path", return_value="/default/path"
FrontendManager,
"init_default_frontend",
return_value={"web_root": mock_path, "version": mock_version},
),
):
frontend_path = FrontendManager.init_frontend(version_string)
frontend_init = FrontendManager.init_frontend(version_string)
# Assert
assert frontend_path == "/default/path"
mock_check.assert_called_once()
assert frontend_init["web_root"] == mock_path
assert frontend_init["version"] == mock_version

View File

@@ -1,17 +1,14 @@
import pytest
import os
import tempfile
from folder_paths import filter_files_content_types, extension_mimetypes_cache
from unittest.mock import patch
from folder_paths import filter_files_content_types
@pytest.fixture(scope="module")
def file_extensions():
return {
'image': ['gif', 'heif', 'ico', 'jpeg', 'jpg', 'png', 'pnm', 'ppm', 'svg', 'tiff', 'webp', 'xbm', 'xpm'],
'audio': ['aif', 'aifc', 'aiff', 'au', 'flac', 'm4a', 'mp2', 'mp3', 'ogg', 'snd', 'wav'],
'video': ['avi', 'm2v', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ogv', 'qt', 'webm', 'wmv'],
'model': ['gltf', 'glb', 'obj', 'fbx', 'stl']
'video': ['avi', 'm2v', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ogv', 'qt', 'webm', 'wmv']
}
@@ -25,18 +22,7 @@ def mock_dir(file_extensions):
yield directory
@pytest.fixture
def patched_mimetype_cache(file_extensions):
# Mock model file extensions since they may not be in the test-runner system's mimetype cache
new_cache = extension_mimetypes_cache.copy()
for extension in file_extensions["model"]:
new_cache[extension] = "model"
with patch("folder_paths.extension_mimetypes_cache", new_cache):
yield
def test_categorizes_all_correctly(mock_dir, file_extensions, patched_mimetype_cache):
def test_categorizes_all_correctly(mock_dir, file_extensions):
files = os.listdir(mock_dir)
for content_type, extensions in file_extensions.items():
filtered_files = filter_files_content_types(files, [content_type])
@@ -44,7 +30,7 @@ def test_categorizes_all_correctly(mock_dir, file_extensions, patched_mimetype_c
assert f"sample_{content_type}.{extension}" in filtered_files
def test_categorizes_all_uniquely(mock_dir, file_extensions, patched_mimetype_cache):
def test_categorizes_all_uniquely(mock_dir, file_extensions):
files = os.listdir(mock_dir)
for content_type, extensions in file_extensions.items():
filtered_files = filter_files_content_types(files, [content_type])