Compare commits

...

19 Commits

Author SHA1 Message Date
comfyanonymous
26c7baf789 Bump ComfyUI version to v0.3.16 2025-02-26 14:30:32 -05:00
comfyanonymous
c37f15f98e Add fast preview support for Wan models. 2025-02-26 08:56:23 -05:00
comfyanonymous
4bca7367f3 Don't try to use clip_fea on t2v model. 2025-02-26 08:38:09 -05:00
comfyanonymous
b6fefe686b Better wan memory estimation. 2025-02-26 07:51:22 -05:00
comfyanonymous
fa62287f1f More code reuse in wan.
Fix bug when changing the compute dtype on wan.
2025-02-26 05:22:29 -05:00
comfyanonymous
0844998db3 Slightly better wan i2v mask implementation. 2025-02-26 03:49:50 -05:00
comfyanonymous
4ced06b879 WIP support for Wan I2V model. 2025-02-26 01:49:43 -05:00
comfyanonymous
cb06e9669b Wan seems to work with fp16. 2025-02-25 21:37:12 -05:00
comfyanonymous
0c32f82298 Fix missing frames in SaveWEBM node. 2025-02-25 20:21:03 -05:00
Yoland Yan
189da3726d Update README.md (#6960) 2025-02-25 17:17:18 -08:00
comfyanonymous
9a66bb972d Make wan work with all latent resolutions.
Cleanup some code.
2025-02-25 19:56:04 -05:00
comfyanonymous
ea0f939df3 Fix issue with wan and other attention implementations. 2025-02-25 19:13:39 -05:00
comfyanonymous
f37551c1d2 Change wan rope implementation to the flux one.
Should be more compatible.
2025-02-25 19:11:14 -05:00
comfyanonymous
63023011b9 WIP support for Wan t2v model. 2025-02-25 17:20:35 -05:00
comfyanonymous
f40076096e Cleanup some lumina te code. 2025-02-25 04:10:26 -05:00
comfyanonymous
96d891cb94 Speedup on some models by not upcasting bfloat16 to float32 on mac. 2025-02-24 05:41:32 -05:00
Robin Huang
4553891bbd Update installation documentation to include desktop + cli. (#6899)
* Update installation documentation.

* Add portable to description.

* Move cli further down.
2025-02-23 19:13:39 -05:00
comfyanonymous
ace899e71a Prioritize fp16 compute when using allow_fp16_accumulation 2025-02-23 04:45:54 -05:00
comfyanonymous
aff16532d4 Remove some useless code. 2025-02-22 04:45:14 -05:00
19 changed files with 1400 additions and 42 deletions

View File

@@ -1,7 +1,7 @@
<div align="center"> <div align="center">
# ComfyUI # ComfyUI
**The most powerful and modular diffusion model GUI and backend.** **The most powerful and modular visual AI engine and application.**
[![Website][website-shield]][website-url] [![Website][website-shield]][website-url]
@@ -31,10 +31,24 @@
![ComfyUI Screenshot](https://github.com/user-attachments/assets/7ccaf2c1-9b72-41ae-9a89-5688c94b7abe) ![ComfyUI Screenshot](https://github.com/user-attachments/assets/7ccaf2c1-9b72-41ae-9a89-5688c94b7abe)
</div> </div>
This ui will let you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart based interface. For some workflow examples and see what ComfyUI can do you can check out: ComfyUI lets you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart based interface. Available on Windows, Linux, and macOS.
### [ComfyUI Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
## Get Started
#### [Desktop Application](https://www.comfy.org/download)
- The easiest way to get started.
- Available on Windows & macOS.
#### [Windows Portable Package](#installing)
- Get the latest commits and completely portable.
- Available on Windows.
#### [Manual Install](#manual-install-windows-linux)
Supports all operating systems and GPU types (NVIDIA, AMD, Intel, Apple Silicon, Ascend).
## Examples
See what ComfyUI can do with the [example workflows](https://comfyanonymous.github.io/ComfyUI_examples/).
### [Installing ComfyUI](#installing)
## Features ## Features
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything. - Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
@@ -121,7 +135,7 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
# Installing # Installing
## Windows ## Windows Portable
There is a portable standalone build for Windows that should work for running on Nvidia GPUs or for running on your CPU only on the [releases page](https://github.com/comfyanonymous/ComfyUI/releases). There is a portable standalone build for Windows that should work for running on Nvidia GPUs or for running on your CPU only on the [releases page](https://github.com/comfyanonymous/ComfyUI/releases).
@@ -141,6 +155,15 @@ See the [Config file](extra_model_paths.yaml.example) to set the search paths fo
To run it on services like paperspace, kaggle or colab you can use my [Jupyter Notebook](notebooks/comfyui_colab.ipynb) To run it on services like paperspace, kaggle or colab you can use my [Jupyter Notebook](notebooks/comfyui_colab.ipynb)
## [comfy-cli](https://docs.comfy.org/comfy-cli/getting-started)
You can install and start ComfyUI using comfy-cli:
```bash
pip install comfy-cli
comfy install
```
## Manual Install (Windows, Linux) ## Manual Install (Windows, Linux)
python 3.13 is supported but using 3.12 is recommended because some custom nodes and their dependencies might not support it yet. python 3.13 is supported but using 3.12 is recommended because some custom nodes and their dependencies might not support it yet.

View File

@@ -407,3 +407,52 @@ class Cosmos1CV8x8x8(LatentFormat):
] ]
latent_rgb_factors_bias = [-0.1223, -0.1889, -0.1976] latent_rgb_factors_bias = [-0.1223, -0.1889, -0.1976]
class Wan21(LatentFormat):
latent_channels = 16
latent_dimensions = 3
latent_rgb_factors = [
[-0.1299, -0.1692, 0.2932],
[ 0.0671, 0.0406, 0.0442],
[ 0.3568, 0.2548, 0.1747],
[ 0.0372, 0.2344, 0.1420],
[ 0.0313, 0.0189, -0.0328],
[ 0.0296, -0.0956, -0.0665],
[-0.3477, -0.4059, -0.2925],
[ 0.0166, 0.1902, 0.1975],
[-0.0412, 0.0267, -0.1364],
[-0.1293, 0.0740, 0.1636],
[ 0.0680, 0.3019, 0.1128],
[ 0.0032, 0.0581, 0.0639],
[-0.1251, 0.0927, 0.1699],
[ 0.0060, -0.0633, 0.0005],
[ 0.3477, 0.2275, 0.2950],
[ 0.1984, 0.0913, 0.1861]
]
latent_rgb_factors_bias = [-0.1835, -0.0868, -0.3360]
def __init__(self):
self.scale_factor = 1.0
self.latents_mean = torch.tensor([
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
]).view(1, self.latent_channels, 1, 1, 1)
self.latents_std = torch.tensor([
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
]).view(1, self.latent_channels, 1, 1, 1)
self.taesd_decoder_name = None #TODO
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return (latent - latents_mean) * self.scale_factor / latents_std
def process_out(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean

View File

@@ -30,38 +30,24 @@ ops = comfy.ops.disable_weight_init
FORCE_UPCAST_ATTENTION_DTYPE = model_management.force_upcast_attention_dtype() FORCE_UPCAST_ATTENTION_DTYPE = model_management.force_upcast_attention_dtype()
def get_attn_precision(attn_precision): def get_attn_precision(attn_precision, current_dtype):
if args.dont_upcast_attention: if args.dont_upcast_attention:
return None return None
if FORCE_UPCAST_ATTENTION_DTYPE is not None:
return FORCE_UPCAST_ATTENTION_DTYPE if FORCE_UPCAST_ATTENTION_DTYPE is not None and current_dtype in FORCE_UPCAST_ATTENTION_DTYPE:
return FORCE_UPCAST_ATTENTION_DTYPE[current_dtype]
return attn_precision return attn_precision
def exists(val): def exists(val):
return val is not None return val is not None
def uniq(arr):
return{el: True for el in arr}.keys()
def default(val, d): def default(val, d):
if exists(val): if exists(val):
return val return val
return d return d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def init_(tensor):
dim = tensor.shape[-1]
std = 1 / math.sqrt(dim)
tensor.uniform_(-std, std)
return tensor
# feedforward # feedforward
class GEGLU(nn.Module): class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops): def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
@@ -96,7 +82,7 @@ def Normalize(in_channels, dtype=None, device=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False): def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
attn_precision = get_attn_precision(attn_precision) attn_precision = get_attn_precision(attn_precision, q.dtype)
if skip_reshape: if skip_reshape:
b, _, _, dim_head = q.shape b, _, _, dim_head = q.shape
@@ -165,7 +151,7 @@ def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False): def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
attn_precision = get_attn_precision(attn_precision) attn_precision = get_attn_precision(attn_precision, query.dtype)
if skip_reshape: if skip_reshape:
b, _, _, dim_head = query.shape b, _, _, dim_head = query.shape
@@ -235,7 +221,7 @@ def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None,
return hidden_states return hidden_states
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False): def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
attn_precision = get_attn_precision(attn_precision) attn_precision = get_attn_precision(attn_precision, q.dtype)
if skip_reshape: if skip_reshape:
b, _, _, dim_head = q.shape b, _, _, dim_head = q.shape

485
comfy/ldm/wan/model.py Normal file
View File

@@ -0,0 +1,485 @@
# original version: https://github.com/Wan-Video/Wan2.1/blob/main/wan/modules/model.py
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math
import torch
import torch.nn as nn
from einops import repeat
from comfy.ldm.modules.attention import optimized_attention
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.math import apply_rope
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
import comfy.ldm.common_dit
import comfy.model_management
def sinusoidal_embedding_1d(dim, position):
# preprocess
assert dim % 2 == 0
half = dim // 2
position = position.type(torch.float64)
# calculation
sinusoid = torch.outer(
position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
return x
class WanSelfAttention(nn.Module):
def __init__(self,
dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
eps=1e-6, operation_settings={}):
assert dim % num_heads == 0
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.eps = eps
# layers
self.q = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.norm_q = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_k = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, freqs):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
# query, key, value function
def qkv_fn(x):
q = self.norm_q(self.q(x)).view(b, s, n, d)
k = self.norm_k(self.k(x)).view(b, s, n, d)
v = self.v(x).view(b, s, n * d)
return q, k, v
q, k, v = qkv_fn(x)
q, k = apply_rope(q, k, freqs)
x = optimized_attention(
q.view(b, s, n * d),
k.view(b, s, n * d),
v,
heads=self.num_heads,
)
x = self.o(x)
return x
class WanT2VCrossAttention(WanSelfAttention):
def forward(self, x, context):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
"""
# compute query, key, value
q = self.norm_q(self.q(x))
k = self.norm_k(self.k(context))
v = self.v(context)
# compute attention
x = optimized_attention(q, k, v, heads=self.num_heads)
x = self.o(x)
return x
class WanI2VCrossAttention(WanSelfAttention):
def __init__(self,
dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
eps=1e-6, operation_settings={}):
super().__init__(dim, num_heads, window_size, qk_norm, eps, operation_settings=operation_settings)
self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.norm_k_img = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, context):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
"""
context_img = context[:, :257]
context = context[:, 257:]
# compute query, key, value
q = self.norm_q(self.q(x))
k = self.norm_k(self.k(context))
v = self.v(context)
k_img = self.norm_k_img(self.k_img(context_img))
v_img = self.v_img(context_img)
img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads)
# compute attention
x = optimized_attention(q, k, v, heads=self.num_heads)
# output
x = x + img_x
x = self.o(x)
return x
WAN_CROSSATTENTION_CLASSES = {
't2v_cross_attn': WanT2VCrossAttention,
'i2v_cross_attn': WanI2VCrossAttention,
}
class WanAttentionBlock(nn.Module):
def __init__(self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6, operation_settings={}):
super().__init__()
self.dim = dim
self.ffn_dim = ffn_dim
self.num_heads = num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# layers
self.norm1 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
eps, operation_settings=operation_settings)
self.norm3 = operation_settings.get("operations").LayerNorm(
dim, eps,
elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if cross_attn_norm else nn.Identity()
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
num_heads,
(-1, -1),
qk_norm,
eps, operation_settings=operation_settings)
self.norm2 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.ffn = nn.Sequential(
operation_settings.get("operations").Linear(dim, ffn_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'),
operation_settings.get("operations").Linear(ffn_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
# modulation
self.modulation = nn.Parameter(torch.empty(1, 6, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
def forward(
self,
x,
e,
freqs,
context,
):
r"""
Args:
x(Tensor): Shape [B, L, C]
e(Tensor): Shape [B, 6, C]
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
# assert e.dtype == torch.float32
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1)
# assert e[0].dtype == torch.float32
# self-attention
y = self.self_attn(
self.norm1(x) * (1 + e[1]) + e[0],
freqs)
x = x + y * e[2]
# cross-attention & ffn function
def cross_attn_ffn(x, context, e):
x = x + self.cross_attn(self.norm3(x), context)
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
x = x + y * e[5]
return x
x = cross_attn_ffn(x, context, e)
return x
class Head(nn.Module):
def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}):
super().__init__()
self.dim = dim
self.out_dim = out_dim
self.patch_size = patch_size
self.eps = eps
# layers
out_dim = math.prod(patch_size) * out_dim
self.norm = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.head = operation_settings.get("operations").Linear(dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
# modulation
self.modulation = nn.Parameter(torch.empty(1, 2, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
def forward(self, x, e):
r"""
Args:
x(Tensor): Shape [B, L1, C]
e(Tensor): Shape [B, C]
"""
# assert e.dtype == torch.float32
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e.unsqueeze(1)).chunk(2, dim=1)
x = (self.head(self.norm(x) * (1 + e[1]) + e[0]))
return x
class MLPProj(torch.nn.Module):
def __init__(self, in_dim, out_dim, operation_settings={}):
super().__init__()
self.proj = torch.nn.Sequential(
operation_settings.get("operations").LayerNorm(in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), operation_settings.get("operations").Linear(in_dim, in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
def forward(self, image_embeds):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class WanModel(torch.nn.Module):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
def __init__(self,
model_type='t2v',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
image_model=None,
device=None,
dtype=None,
operations=None,
):
r"""
Initialize the diffusion model backbone.
Args:
model_type (`str`, *optional*, defaults to 't2v'):
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
text_len (`int`, *optional*, defaults to 512):
Fixed length for text embeddings
in_dim (`int`, *optional*, defaults to 16):
Input video channels (C_in)
dim (`int`, *optional*, defaults to 2048):
Hidden dimension of the transformer
ffn_dim (`int`, *optional*, defaults to 8192):
Intermediate dimension in feed-forward network
freq_dim (`int`, *optional*, defaults to 256):
Dimension for sinusoidal time embeddings
text_dim (`int`, *optional*, defaults to 4096):
Input dimension for text embeddings
out_dim (`int`, *optional*, defaults to 16):
Output video channels (C_out)
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads
num_layers (`int`, *optional*, defaults to 32):
Number of transformer blocks
window_size (`tuple`, *optional*, defaults to (-1, -1)):
Window size for local attention (-1 indicates global attention)
qk_norm (`bool`, *optional*, defaults to True):
Enable query/key normalization
cross_attn_norm (`bool`, *optional*, defaults to False):
Enable cross-attention normalization
eps (`float`, *optional*, defaults to 1e-6):
Epsilon value for normalization layers
"""
super().__init__()
self.dtype = dtype
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
assert model_type in ['t2v', 'i2v']
self.model_type = model_type
self.patch_size = patch_size
self.text_len = text_len
self.in_dim = in_dim
self.dim = dim
self.ffn_dim = ffn_dim
self.freq_dim = freq_dim
self.text_dim = text_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.num_layers = num_layers
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# embeddings
self.patch_embedding = operations.Conv3d(
in_dim, dim, kernel_size=patch_size, stride=patch_size, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.text_embedding = nn.Sequential(
operations.Linear(text_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'),
operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
self.time_embedding = nn.Sequential(
operations.Linear(freq_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.SiLU(), operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
self.time_projection = nn.Sequential(nn.SiLU(), operations.Linear(dim, dim * 6, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
# blocks
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
self.blocks = nn.ModuleList([
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
for _ in range(num_layers)
])
# head
self.head = Head(dim, out_dim, patch_size, eps, operation_settings=operation_settings)
d = dim // num_heads
self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)])
if model_type == 'i2v':
self.img_emb = MLPProj(1280, dim, operation_settings=operation_settings)
else:
self.img_emb = None
def forward_orig(
self,
x,
t,
context,
clip_fea=None,
freqs=None,
):
r"""
Forward pass through the diffusion model
Args:
x (Tensor):
List of input video tensors with shape [B, C_in, F, H, W]
t (Tensor):
Diffusion timesteps tensor of shape [B]
context (List[Tensor]):
List of text embeddings each with shape [B, L, C]
seq_len (`int`):
Maximum sequence length for positional encoding
clip_fea (Tensor, *optional*):
CLIP image features for image-to-video mode
y (List[Tensor], *optional*):
Conditional video inputs for image-to-video mode, same shape as x
Returns:
List[Tensor]:
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
"""
# embeddings
x = self.patch_embedding(x)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
# context
context = self.text_embedding(torch.cat([context, context.new_zeros(context.size(0), self.text_len - context.size(1), context.size(2))], dim=1))
if clip_fea is not None and self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
# arguments
kwargs = dict(
e=e0,
freqs=freqs,
context=context)
for block in self.blocks:
x = block(x, **kwargs)
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
# return [u.float() for u in x]
def forward(self, x, timestep, context, clip_fea=None, **kwargs):
bs, c, t, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
freqs = self.rope_embedder(img_ids).movedim(1, 2)
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs)[:, :, :t, :h, :w]
def unpatchify(self, x, grid_sizes):
r"""
Reconstruct video tensors from patch embeddings.
Args:
x (List[Tensor]):
List of patchified features, each with shape [L, C_out * prod(patch_size)]
grid_sizes (Tensor):
Original spatial-temporal grid dimensions before patching,
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
Returns:
List[Tensor]:
Reconstructed video tensors with shape [L, C_out, F, H / 8, W / 8]
"""
c = self.out_dim
u = x
b = u.shape[0]
u = u[:, :math.prod(grid_sizes)].view(b, *grid_sizes, *self.patch_size, c)
u = torch.einsum('bfhwpqrc->bcfphqwr', u)
u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)])
return u

567
comfy/ldm/wan/vae.py Normal file
View File

@@ -0,0 +1,567 @@
# original version: https://github.com/Wan-Video/Wan2.1/blob/main/wan/modules/vae.py
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from comfy.ldm.modules.diffusionmodules.model import vae_attention
import comfy.ops
ops = comfy.ops.disable_weight_init
CACHE_T = 2
class CausalConv3d(ops.Conv3d):
"""
Causal 3d convolusion.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._padding = (self.padding[2], self.padding[2], self.padding[1],
self.padding[1], 2 * self.padding[0], 0)
self.padding = (0, 0, 0)
def forward(self, x, cache_x=None):
padding = list(self._padding)
if cache_x is not None and self._padding[4] > 0:
cache_x = cache_x.to(x.device)
x = torch.cat([cache_x, x], dim=2)
padding[4] -= cache_x.shape[2]
x = F.pad(x, padding)
return super().forward(x)
class RMS_norm(nn.Module):
def __init__(self, dim, channel_first=True, images=True, bias=False):
super().__init__()
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
self.channel_first = channel_first
self.scale = dim**0.5
self.gamma = nn.Parameter(torch.ones(shape))
self.bias = nn.Parameter(torch.zeros(shape)) if bias else None
def forward(self, x):
return F.normalize(
x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma.to(x) + (self.bias.to(x) if self.bias is not None else 0)
class Upsample(nn.Upsample):
def forward(self, x):
"""
Fix bfloat16 support for nearest neighbor interpolation.
"""
return super().forward(x.float()).type_as(x)
class Resample(nn.Module):
def __init__(self, dim, mode):
assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d',
'downsample3d')
super().__init__()
self.dim = dim
self.mode = mode
# layers
if mode == 'upsample2d':
self.resample = nn.Sequential(
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
ops.Conv2d(dim, dim // 2, 3, padding=1))
elif mode == 'upsample3d':
self.resample = nn.Sequential(
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
ops.Conv2d(dim, dim // 2, 3, padding=1))
self.time_conv = CausalConv3d(
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
elif mode == 'downsample2d':
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)),
ops.Conv2d(dim, dim, 3, stride=(2, 2)))
elif mode == 'downsample3d':
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)),
ops.Conv2d(dim, dim, 3, stride=(2, 2)))
self.time_conv = CausalConv3d(
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
else:
self.resample = nn.Identity()
def forward(self, x, feat_cache=None, feat_idx=[0]):
b, c, t, h, w = x.size()
if self.mode == 'upsample3d':
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = 'Rep'
feat_idx[0] += 1
else:
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[
idx] is not None and feat_cache[idx] != 'Rep':
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
if cache_x.shape[2] < 2 and feat_cache[
idx] is not None and feat_cache[idx] == 'Rep':
cache_x = torch.cat([
torch.zeros_like(cache_x).to(cache_x.device),
cache_x
],
dim=2)
if feat_cache[idx] == 'Rep':
x = self.time_conv(x)
else:
x = self.time_conv(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
x = x.reshape(b, 2, c, t, h, w)
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
3)
x = x.reshape(b, c, t * 2, h, w)
t = x.shape[2]
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = self.resample(x)
x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
if self.mode == 'downsample3d':
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = x.clone()
feat_idx[0] += 1
else:
cache_x = x[:, :, -1:, :, :].clone()
# if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
# # cache last frame of last two chunk
# cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.time_conv(
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
feat_cache[idx] = cache_x
feat_idx[0] += 1
return x
def init_weight(self, conv):
conv_weight = conv.weight
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
one_matrix = torch.eye(c1, c2)
init_matrix = one_matrix
nn.init.zeros_(conv_weight)
#conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
conv_weight.data[:, :, 1, 0, 0] = init_matrix #* 0.5
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
def init_weight2(self, conv):
conv_weight = conv.weight.data
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
init_matrix = torch.eye(c1 // 2, c2)
#init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
class ResidualBlock(nn.Module):
def __init__(self, in_dim, out_dim, dropout=0.0):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
# layers
self.residual = nn.Sequential(
RMS_norm(in_dim, images=False), nn.SiLU(),
CausalConv3d(in_dim, out_dim, 3, padding=1),
RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout),
CausalConv3d(out_dim, out_dim, 3, padding=1))
self.shortcut = CausalConv3d(in_dim, out_dim, 1) \
if in_dim != out_dim else nn.Identity()
def forward(self, x, feat_cache=None, feat_idx=[0]):
h = self.shortcut(x)
for layer in self.residual:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x + h
class AttentionBlock(nn.Module):
"""
Causal self-attention with a single head.
"""
def __init__(self, dim):
super().__init__()
self.dim = dim
# layers
self.norm = RMS_norm(dim)
self.to_qkv = ops.Conv2d(dim, dim * 3, 1)
self.proj = ops.Conv2d(dim, dim, 1)
self.optimized_attention = vae_attention()
def forward(self, x):
identity = x
b, c, t, h, w = x.size()
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = self.norm(x)
# compute query, key, value
q, k, v = self.to_qkv(x).chunk(3, dim=1)
x = self.optimized_attention(q, k, v)
# output
x = self.proj(x)
x = rearrange(x, '(b t) c h w-> b c t h w', t=t)
return x + identity
class Encoder3d(nn.Module):
def __init__(self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
dropout=0.0):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
# dimensions
dims = [dim * u for u in [1] + dim_mult]
scale = 1.0
# init block
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
# downsample blocks
downsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
# residual (+attention) blocks
for _ in range(num_res_blocks):
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
if scale in attn_scales:
downsamples.append(AttentionBlock(out_dim))
in_dim = out_dim
# downsample block
if i != len(dim_mult) - 1:
mode = 'downsample3d' if temperal_downsample[
i] else 'downsample2d'
downsamples.append(Resample(out_dim, mode=mode))
scale /= 2.0
self.downsamples = nn.Sequential(*downsamples)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim),
ResidualBlock(out_dim, out_dim, dropout))
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False), nn.SiLU(),
CausalConv3d(out_dim, z_dim, 3, padding=1))
def forward(self, x, feat_cache=None, feat_idx=[0]):
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
## downsamples
for layer in self.downsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## middle
for layer in self.middle:
if isinstance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## head
for layer in self.head:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x
class Decoder3d(nn.Module):
def __init__(self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_upsample=[False, True, True],
dropout=0.0):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_upsample = temperal_upsample
# dimensions
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
scale = 1.0 / 2**(len(dim_mult) - 2)
# init block
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]),
ResidualBlock(dims[0], dims[0], dropout))
# upsample blocks
upsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
# residual (+attention) blocks
if i == 1 or i == 2 or i == 3:
in_dim = in_dim // 2
for _ in range(num_res_blocks + 1):
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
if scale in attn_scales:
upsamples.append(AttentionBlock(out_dim))
in_dim = out_dim
# upsample block
if i != len(dim_mult) - 1:
mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d'
upsamples.append(Resample(out_dim, mode=mode))
scale *= 2.0
self.upsamples = nn.Sequential(*upsamples)
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False), nn.SiLU(),
CausalConv3d(out_dim, 3, 3, padding=1))
def forward(self, x, feat_cache=None, feat_idx=[0]):
## conv1
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
## middle
for layer in self.middle:
if isinstance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## upsamples
for layer in self.upsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## head
for layer in self.head:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x
def count_conv3d(model):
count = 0
for m in model.modules():
if isinstance(m, CausalConv3d):
count += 1
return count
class WanVAE(nn.Module):
def __init__(self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
dropout=0.0):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
self.temperal_upsample = temperal_downsample[::-1]
# modules
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks,
attn_scales, self.temperal_downsample, dropout)
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
attn_scales, self.temperal_upsample, dropout)
def forward(self, x):
mu, log_var = self.encode(x)
z = self.reparameterize(mu, log_var)
x_recon = self.decode(z)
return x_recon, mu, log_var
def encode(self, x):
self.clear_cache()
## cache
t = x.shape[2]
iter_ = 1 + (t - 1) // 4
## 对encode输入的x按时间拆分为1、4、4、4....
for i in range(iter_):
self._enc_conv_idx = [0]
if i == 0:
out = self.encoder(
x[:, :, :1, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx)
else:
out_ = self.encoder(
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx)
out = torch.cat([out, out_], 2)
mu, log_var = self.conv1(out).chunk(2, dim=1)
self.clear_cache()
return mu
def decode(self, z):
self.clear_cache()
# z: [b,c,t,h,w]
iter_ = z.shape[2]
x = self.conv2(z)
for i in range(iter_):
self._conv_idx = [0]
if i == 0:
out = self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx)
else:
out_ = self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx)
out = torch.cat([out, out_], 2)
self.clear_cache()
return out
def reparameterize(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return eps * std + mu
def sample(self, imgs, deterministic=False):
mu, log_var = self.encode(imgs)
if deterministic:
return mu
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
return mu + std * torch.randn_like(std)
def clear_cache(self):
self._conv_num = count_conv3d(self.decoder)
self._conv_idx = [0]
self._feat_map = [None] * self._conv_num
#cache encode
self._enc_conv_num = count_conv3d(self.encoder)
self._enc_conv_idx = [0]
self._enc_feat_map = [None] * self._enc_conv_num

View File

@@ -35,6 +35,7 @@ import comfy.ldm.lightricks.model
import comfy.ldm.hunyuan_video.model import comfy.ldm.hunyuan_video.model
import comfy.ldm.cosmos.model import comfy.ldm.cosmos.model
import comfy.ldm.lumina.model import comfy.ldm.lumina.model
import comfy.ldm.wan.model
import comfy.model_management import comfy.model_management
import comfy.patcher_extension import comfy.patcher_extension
@@ -927,3 +928,47 @@ class Lumina2(BaseModel):
if cross_attn is not None: if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out return out
class WAN21(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel)
self.image_to_video = image_to_video
def concat_cond(self, **kwargs):
if not self.image_to_video:
return None
image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
device = kwargs["device"]
if image is None:
image = torch.zeros_like(noise)
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
image = self.process_latent_in(image)
image = utils.resize_to_batch_size(image, noise.shape[0])
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None:
mask = torch.zeros_like(noise)[:, :4]
else:
mask = 1.0 - torch.mean(mask, dim=1, keepdim=True)
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
if mask.shape[-3] < noise.shape[-3]:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
mask = mask.repeat(1, 4, 1, 1, 1)
mask = utils.resize_to_batch_size(mask, noise.shape[0])
return torch.cat((mask, image), dim=1)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
clip_vision_output = kwargs.get("clip_vision_output", None)
if clip_vision_output is not None:
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.penultimate_hidden_states)
return out

View File

@@ -299,6 +299,27 @@ def detect_unet_config(state_dict, key_prefix):
dit_config["axes_lens"] = [300, 512, 512] dit_config["axes_lens"] = [300, 512, 512]
return dit_config return dit_config
if '{}head.modulation'.format(key_prefix) in state_dict_keys: # Wan 2.1
dit_config = {}
dit_config["image_model"] = "wan2.1"
dim = state_dict['{}head.modulation'.format(key_prefix)].shape[-1]
dit_config["dim"] = dim
dit_config["num_heads"] = dim // 128
dit_config["ffn_dim"] = state_dict['{}blocks.0.ffn.0.weight'.format(key_prefix)].shape[0]
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.')
dit_config["patch_size"] = (1, 2, 2)
dit_config["freq_dim"] = 256
dit_config["window_size"] = (-1, -1)
dit_config["qk_norm"] = True
dit_config["cross_attn_norm"] = True
dit_config["eps"] = 1e-6
dit_config["in_dim"] = state_dict['{}patch_embedding.weight'.format(key_prefix)].shape[1]
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "i2v"
else:
dit_config["model_type"] = "t2v"
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys: if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None return None

View File

@@ -256,9 +256,12 @@ if ENABLE_PYTORCH_ATTENTION:
torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True) torch.backends.cuda.enable_mem_efficient_sdp(True)
PRIORITIZE_FP16 = False # TODO: remove and replace with something that shows exactly which dtype is faster than the other
try: try:
if is_nvidia() and args.fast: if is_nvidia() and args.fast:
torch.backends.cuda.matmul.allow_fp16_accumulation = True torch.backends.cuda.matmul.allow_fp16_accumulation = True
PRIORITIZE_FP16 = True # TODO: limit to cards where it actually boosts performance
except: except:
pass pass
@@ -681,6 +684,10 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
if model_params * 2 > free_model_memory: if model_params * 2 > free_model_memory:
return fp8_dtype return fp8_dtype
if PRIORITIZE_FP16:
if torch.float16 in supported_dtypes and should_use_fp16(device=device, model_params=model_params):
return torch.float16
for dt in supported_dtypes: for dt in supported_dtypes:
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params): if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params):
if torch.float16 in supported_dtypes: if torch.float16 in supported_dtypes:
@@ -947,7 +954,7 @@ def force_upcast_attention_dtype():
upcast = True upcast = True
if upcast: if upcast:
return torch.float32 return {torch.float16: torch.float32}
else: else:
return None return None

View File

@@ -639,7 +639,7 @@ class ModelPatcher:
mem_counter += module_mem mem_counter += module_mem
load_completely.append((module_mem, n, m, params)) load_completely.append((module_mem, n, m, params))
if cast_weight: if cast_weight and hasattr(m, "comfy_cast_weights"):
m.prev_comfy_cast_weights = m.comfy_cast_weights m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True m.comfy_cast_weights = True

View File

@@ -12,6 +12,7 @@ from .ldm.audio.autoencoder import AudioOobleckVAE
import comfy.ldm.genmo.vae.model import comfy.ldm.genmo.vae.model
import comfy.ldm.lightricks.vae.causal_video_autoencoder import comfy.ldm.lightricks.vae.causal_video_autoencoder
import comfy.ldm.cosmos.vae import comfy.ldm.cosmos.vae
import comfy.ldm.wan.vae
import yaml import yaml
import math import math
@@ -37,6 +38,7 @@ import comfy.text_encoders.lt
import comfy.text_encoders.hunyuan_video import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2 import comfy.text_encoders.lumina2
import comfy.text_encoders.wan
import comfy.model_patcher import comfy.model_patcher
import comfy.lora import comfy.lora
@@ -392,6 +394,18 @@ class VAE:
self.memory_used_decode = lambda shape, dtype: (50 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype) self.memory_used_decode = lambda shape, dtype: (50 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (50 * (round((shape[2] + 7) / 8) * 8) * shape[3] * shape[4]) * model_management.dtype_size(dtype) self.memory_used_encode = lambda shape, dtype: (50 * (round((shape[2] + 7) / 8) * 8) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.working_dtypes = [torch.bfloat16, torch.float32] self.working_dtypes = [torch.bfloat16, torch.float32]
elif "decoder.middle.0.residual.0.gamma" in sd:
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (4, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.downscale_index_formula = (4, 8, 8)
self.latent_dim = 3
self.latent_channels = 16
ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
else: else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.") logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None self.first_stage_model = None
@@ -659,6 +673,7 @@ class CLIPType(Enum):
PIXART = 10 PIXART = 10
COSMOS = 11 COSMOS = 11
LUMINA2 = 12 LUMINA2 = 12
WAN = 13
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@@ -763,6 +778,10 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.PIXART: elif clip_type == CLIPType.PIXART:
clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data)) clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer
elif clip_type == CLIPType.WAN:
clip_target.clip = comfy.text_encoders.wan.te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.wan.WanT5Tokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
else: #CLIPType.MOCHI else: #CLIPType.MOCHI
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data)) clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer

View File

@@ -16,6 +16,7 @@ import comfy.text_encoders.lt
import comfy.text_encoders.hunyuan_video import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2 import comfy.text_encoders.lumina2
import comfy.text_encoders.wan
from . import supported_models_base from . import supported_models_base
from . import latent_formats from . import latent_formats
@@ -895,6 +896,49 @@ class Lumina2(supported_models_base.BASE):
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}gemma2_2b.transformer.".format(pref)) hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}gemma2_2b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.lumina2.LuminaTokenizer, comfy.text_encoders.lumina2.te(**hunyuan_detect)) return supported_models_base.ClipTarget(comfy.text_encoders.lumina2.LuminaTokenizer, comfy.text_encoders.lumina2.te(**hunyuan_detect))
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2] class WAN21_T2V(supported_models_base.BASE):
unet_config = {
"image_model": "wan2.1",
"model_type": "t2v",
}
sampling_settings = {
"shift": 8.0,
}
unet_extra_config = {}
latent_format = latent_formats.Wan21
memory_usage_factor = 1.0
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = self.unet_config.get("dim", 2000) / 2000
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}umt5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.wan.WanT5Tokenizer, comfy.text_encoders.wan.te(**t5_detect))
class WAN21_I2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "i2v",
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21(self, image_to_video=True, device=device)
return out
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V]
models += [SVD_img2vid] models += [SVD_img2vid]

View File

@@ -19,11 +19,6 @@ class LuminaTokenizer(sd1_clip.SD1Tokenizer):
class Gemma2_2BModel(sd1_clip.SDClipModel): class Gemma2_2BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}): def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}):
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
if llama_scaled_fp8 is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma2_2B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma2_2B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
@@ -35,10 +30,10 @@ class LuminaModel(sd1_clip.SD1ClipModel):
def te(dtype_llama=None, llama_scaled_fp8=None): def te(dtype_llama=None, llama_scaled_fp8=None):
class LuminaTEModel_(LuminaModel): class LuminaTEModel_(LuminaModel):
def __init__(self, device="cpu", dtype=None, model_options={}): def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options: if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy() model_options = model_options.copy()
model_options["llama_scaled_fp8"] = llama_scaled_fp8 model_options["scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None: if dtype_llama is not None:
dtype = dtype_llama dtype = dtype_llama
super().__init__(device=device, dtype=dtype, model_options=model_options) super().__init__(device=device, dtype=dtype, model_options=model_options)
return LuminaTEModel_ return LuminaTEModel_

View File

@@ -0,0 +1,22 @@
{
"d_ff": 10240,
"d_kv": 64,
"d_model": 4096,
"decoder_start_token_id": 0,
"dropout_rate": 0.1,
"eos_token_id": 1,
"dense_act_fn": "gelu_pytorch_tanh",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"is_gated_act": true,
"layer_norm_epsilon": 1e-06,
"model_type": "umt5",
"num_decoder_layers": 24,
"num_heads": 64,
"num_layers": 24,
"output_past": true,
"pad_token_id": 0,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"vocab_size": 256384
}

View File

@@ -0,0 +1,37 @@
from comfy import sd1_clip
from .spiece_tokenizer import SPieceTokenizer
import comfy.text_encoders.t5
import os
class UMT5XXlModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "umt5_config_xxl.json")
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=True, model_options=model_options)
class UMT5XXlTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=4096, embedding_key='umt5xxl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=0)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
class WanT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="umt5xxl", tokenizer=UMT5XXlTokenizer)
class WanT5Model(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
super().__init__(device=device, dtype=dtype, model_options=model_options, name="umt5xxl", clip_model=UMT5XXlModel, **kwargs)
def te(dtype_t5=None, t5xxl_scaled_fp8=None):
class WanTEModel(WanT5Model):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["scaled_fp8"] = t5xxl_scaled_fp8
if dtype_t5 is not None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)
return WanTEModel

View File

@@ -59,6 +59,7 @@ class SaveWEBM:
frame = av.VideoFrame.from_ndarray(torch.clamp(frame[..., :3] * 255, min=0, max=255).to(device=torch.device("cpu"), dtype=torch.uint8).numpy(), format="rgb24") frame = av.VideoFrame.from_ndarray(torch.clamp(frame[..., :3] * 255, min=0, max=255).to(device=torch.device("cpu"), dtype=torch.uint8).numpy(), format="rgb24")
for packet in stream.encode(frame): for packet in stream.encode(frame):
container.mux(packet) container.mux(packet)
container.mux(stream.encode())
container.close() container.close()
results = [{ results = [{

54
comfy_extras/nodes_wan.py Normal file
View File

@@ -0,0 +1,54 @@
import nodes
import node_helpers
import torch
import comfy.model_management
import comfy.utils
class WanImageToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE", ),
"width": ("INT", {"default": 1280, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 720, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 121, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"start_image": ("IMAGE", ),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None):
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
image = torch.ones((length, height, width, start_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) * 0.5
image[:start_image.shape[0]] = start_image
concat_latent_image = vae.encode(image[:, :, :, :3])
mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype)
mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
out_latent = {}
out_latent["samples"] = latent
return (positive, negative, out_latent)
NODE_CLASS_MAPPINGS = {
"WanImageToVideo": WanImageToVideo,
}

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is # This file is automatically generated by the build process when version is
# updated in pyproject.toml. # updated in pyproject.toml.
__version__ = "0.3.15" __version__ = "0.3.16"

View File

@@ -914,7 +914,7 @@ class CLIPLoader:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ), return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2"], ), "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan"], ),
}, },
"optional": { "optional": {
"device": (["default", "cpu"], {"advanced": True}), "device": (["default", "cpu"], {"advanced": True}),
@@ -924,7 +924,7 @@ class CLIPLoader:
CATEGORY = "advanced/loaders" CATEGORY = "advanced/loaders"
DESCRIPTION = "[Recipes]\n\nstable_diffusion: clip-l\nstable_cascade: clip-g\nsd3: t5 / clip-g / clip-l\nstable_audio: t5\nmochi: t5\ncosmos: old t5 xxl\nlumina2: gemma 2 2B" DESCRIPTION = "[Recipes]\n\nstable_diffusion: clip-l\nstable_cascade: clip-g\nsd3: t5 xxl/ clip-g / clip-l\nstable_audio: t5 base\nmochi: t5 xxl\ncosmos: old t5 xxl\nlumina2: gemma 2 2B\nwan: umt5 xxl"
def load_clip(self, clip_name, type="stable_diffusion", device="default"): def load_clip(self, clip_name, type="stable_diffusion", device="default"):
if type == "stable_cascade": if type == "stable_cascade":
@@ -943,6 +943,8 @@ class CLIPLoader:
clip_type = comfy.sd.CLIPType.COSMOS clip_type = comfy.sd.CLIPType.COSMOS
elif type == "lumina2": elif type == "lumina2":
clip_type = comfy.sd.CLIPType.LUMINA2 clip_type = comfy.sd.CLIPType.LUMINA2
elif type == "wan":
clip_type = comfy.sd.CLIPType.WAN
else: else:
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
@@ -2267,6 +2269,7 @@ def init_builtin_extra_nodes():
"nodes_cosmos.py", "nodes_cosmos.py",
"nodes_video.py", "nodes_video.py",
"nodes_lumina2.py", "nodes_lumina2.py",
"nodes_wan.py",
] ]
import_failed = [] import_failed = []

View File

@@ -1,6 +1,6 @@
[project] [project]
name = "ComfyUI" name = "ComfyUI"
version = "0.3.15" version = "0.3.16"
readme = "README.md" readme = "README.md"
license = { file = "LICENSE" } license = { file = "LICENSE" }
requires-python = ">=3.9" requires-python = ">=3.9"