Compare commits

..

30 Commits

Author SHA1 Message Date
comfyanonymous
8e4118c0de make dpm_2_ancestral work with rectified flow. 2024-12-01 07:37:41 -05:00
comfyanonymous
3fc6ebcdd7 Add basic style model "multiply" strength. 2024-11-30 07:27:11 -05:00
comfyanonymous
20a560eb97 How to enable experimental memory efficient attention on ROCm RDNA3. 2024-11-29 06:19:49 -05:00
Dr.Lt.Data
82c5308561 Backward compatibility patch for changes in the method signature of InpaintModelConditioning. (#5825)
https://github.com/comfyanonymous/ComfyUI/issues/5813
2024-11-28 20:30:28 -05:00
comfyanonymous
26fb2c68e8 Add a way to disable cropping in the CLIPVisionEncode node. 2024-11-28 20:24:47 -05:00
comfyanonymous
bf2650a80e Fast previews for ltxv. 2024-11-28 06:46:15 -05:00
Chenlei Hu
53646e0f32 Update web content to release v1.4.13 (#5807) 2024-11-28 04:59:06 -05:00
Chenlei Hu
20879c78f9 Remove internal model download endpoint (#5432) 2024-11-28 04:57:06 -05:00
comfyanonymous
b666539595 Remove print. 2024-11-27 20:28:39 -05:00
comfyanonymous
95d8713482 Missing parentheses. 2024-11-27 13:45:32 -05:00
comfyanonymous
0d4e29f13f LTXV model merging node. 2024-11-27 01:43:31 -05:00
comfyanonymous
497db6212f Alternative fix for #5767 2024-11-26 17:53:04 -05:00
lky
24dc581dc3 fix multi add makedirs error (#5786)
try to start multiple comfyui server at the same time, and this got error
2024-11-26 15:34:19 -05:00
comfyanonymous
4c82741b54 Support official SD3.5 Controlnets. 2024-11-26 11:31:25 -05:00
comfyanonymous
15c39ea757 Support for the official mochi lora format. 2024-11-26 03:34:36 -05:00
comfyanonymous
b7143b74ce Flux inpaint model does not work in fp16. 2024-11-26 01:33:01 -05:00
comfyanonymous
61196d8857 Add option to inference the diffusion model in fp32 and fp64. 2024-11-25 05:00:23 -05:00
comfyanonymous
b4526d3fc3 Skip layer guidance now works on hydit model. 2024-11-24 05:54:30 -05:00
40476
3d802710e7 Update README.md (#5707) 2024-11-24 04:12:07 -05:00
spacepxl
7126ecffde set LTX min length to 1 for t2i (#5750)
At length=1, the LTX model can do txt2img and img2img with no other changes required.
2024-11-23 21:33:08 -05:00
comfyanonymous
ab885b33ba Skip layer guidance node now works on LTX-Video. 2024-11-23 10:33:05 -05:00
comfyanonymous
839ed3368e Some improvements to the lowvram unloading. 2024-11-22 20:59:15 -05:00
comfyanonymous
6e8cdcd3cb Fix some tiled VAE decoding issues with LTX-Video. 2024-11-22 18:00:34 -05:00
comfyanonymous
e5c3f4b87f LTXV lowvram fixes. 2024-11-22 17:17:11 -05:00
comfyanonymous
bc6be6c11e Some fixes to the lowvram system. 2024-11-22 16:40:04 -05:00
comfyanonymous
94323a26a7 Remove prints. 2024-11-22 10:51:31 -05:00
comfyanonymous
5818f6cf51 Remove print. 2024-11-22 10:49:15 -05:00
comfyanonymous
0b734de449 Add LTX-Video support to the Readme. 2024-11-22 09:24:20 -05:00
comfyanonymous
5e16f1d24b Support Lightricks LTX-Video model. 2024-11-22 08:46:39 -05:00
comfyanonymous
2fd9c1308a Fix mask issue in some attention functions. 2024-11-22 02:10:09 -05:00
87 changed files with 71483 additions and 20589 deletions

View File

@@ -39,6 +39,7 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
## Features
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
- Fully supports SD1.x, SD2.x, [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/), [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/), [SD3](https://comfyanonymous.github.io/ComfyUI_examples/sd3/) and [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- [LTX-Video](https://comfyanonymous.github.io/ComfyUI_examples/ltxv/)
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
- Asynchronous Queue system
@@ -74,37 +75,37 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
| Keybind | Explanation |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Ctrl + Enter | Queue up current graph for generation |
| Ctrl + Shift + Enter | Queue up current graph as first for generation |
| Ctrl + Alt + Enter | Cancel current generation |
| Ctrl + Z/Ctrl + Y | Undo/Redo |
| Ctrl + S | Save workflow |
| Ctrl + O | Load workflow |
| Ctrl + A | Select all nodes |
| Alt + C | Collapse/uncollapse selected nodes |
| Ctrl + M | Mute/unmute selected nodes |
| Ctrl + B | Bypass selected nodes (acts like the node was removed from the graph and the wires reconnected through) |
| Delete/Backspace | Delete selected nodes |
| Ctrl + Backspace | Delete the current graph |
| Space | Move the canvas around when held and moving the cursor |
| Ctrl/Shift + Click | Add clicked node to selection |
| Ctrl + C/Ctrl + V | Copy and paste selected nodes (without maintaining connections to outputs of unselected nodes) |
| Ctrl + C/Ctrl + Shift + V | Copy and paste selected nodes (maintaining connections from outputs of unselected nodes to inputs of pasted nodes) |
| Shift + Drag | Move multiple selected nodes at the same time |
| Ctrl + D | Load default graph |
| Alt + `+` | Canvas Zoom in |
| Alt + `-` | Canvas Zoom out |
| Ctrl + Shift + LMB + Vertical drag | Canvas Zoom in/out |
| P | Pin/Unpin selected nodes |
| Ctrl + G | Group selected nodes |
| Q | Toggle visibility of the queue |
| H | Toggle visibility of history |
| R | Refresh graph |
| `Ctrl` + `Enter` | Queue up current graph for generation |
| `Ctrl` + `Shift` + `Enter` | Queue up current graph as first for generation |
| `Ctrl` + `Alt` + `Enter` | Cancel current generation |
| `Ctrl` + `Z`/`Ctrl` + `Y` | Undo/Redo |
| `Ctrl` + `S` | Save workflow |
| `Ctrl` + `O` | Load workflow |
| `Ctrl` + `A` | Select all nodes |
| `Alt `+ `C` | Collapse/uncollapse selected nodes |
| `Ctrl` + `M` | Mute/unmute selected nodes |
| `Ctrl` + `B` | Bypass selected nodes (acts like the node was removed from the graph and the wires reconnected through) |
| `Delete`/`Backspace` | Delete selected nodes |
| `Ctrl` + `Backspace` | Delete the current graph |
| `Space` | Move the canvas around when held and moving the cursor |
| `Ctrl`/`Shift` + `Click` | Add clicked node to selection |
| `Ctrl` + `C`/`Ctrl` + `V` | Copy and paste selected nodes (without maintaining connections to outputs of unselected nodes) |
| `Ctrl` + `C`/`Ctrl` + `Shift` + `V` | Copy and paste selected nodes (maintaining connections from outputs of unselected nodes to inputs of pasted nodes) |
| `Shift` + `Drag` | Move multiple selected nodes at the same time |
| `Ctrl` + `D` | Load default graph |
| `Alt` + `+` | Canvas Zoom in |
| `Alt` + `-` | Canvas Zoom out |
| `Ctrl` + `Shift` + LMB + Vertical drag | Canvas Zoom in/out |
| `P` | Pin/Unpin selected nodes |
| `Ctrl` + `G` | Group selected nodes |
| `Q` | Toggle visibility of the queue |
| `H` | Toggle visibility of history |
| `R` | Refresh graph |
| Double-Click LMB | Open node quick search palette |
| Shift + Drag | Move multiple wires at once |
| Ctrl + Alt + LMB | Disconnect all wires from clicked slot |
| `Shift` + Drag | Move multiple wires at once |
| `Ctrl` + `Alt` + LMB | Disconnect all wires from clicked slot |
Ctrl can also be replaced with Cmd instead for macOS users
`Ctrl` can also be replaced with `Cmd` instead for macOS users
# Installing
@@ -212,6 +213,12 @@ For 6700, 6600 and maybe other RDNA2 or older: ```HSA_OVERRIDE_GFX_VERSION=10.3.
For AMD 7600 and maybe other RDNA3 cards: ```HSA_OVERRIDE_GFX_VERSION=11.0.0 python main.py```
### AMD ROCm Tips
You can enable experimental memory efficient attention on pytorch 2.5 in ComfyUI on RDNA3 and potentially other AMD GPUs using this command:
```TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1 python main.py --use-pytorch-cross-attention```
# Notes
Only parts of the graph that have an output with all the correct inputs will be executed.

View File

@@ -10,7 +10,6 @@ class InternalRoutes:
The top level web router for internal routes: /internal/*
The endpoints here should NOT be depended upon. It is for ComfyUI frontend use only.
Check README.md for more information.
'''
def __init__(self, prompt_server):

View File

@@ -36,7 +36,7 @@ class UserManager():
self.settings = AppSettings(self)
if not os.path.exists(user_directory):
os.mkdir(user_directory)
os.makedirs(user_directory, exist_ok=True)
if not args.multi_user:
print("****** User settings have been changed to be stored on the server instead of browser storage. ******")
print("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")

122
comfy/cldm/dit_embedder.py Normal file
View File

@@ -0,0 +1,122 @@
import math
from typing import List, Optional, Tuple
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from torch import Tensor
from comfy.ldm.modules.diffusionmodules.mmdit import DismantledBlock, PatchEmbed, VectorEmbedder, TimestepEmbedder, get_2d_sincos_pos_embed_torch
class ControlNetEmbedder(nn.Module):
def __init__(
self,
img_size: int,
patch_size: int,
in_chans: int,
attention_head_dim: int,
num_attention_heads: int,
adm_in_channels: int,
num_layers: int,
main_model_double: int,
double_y_emb: bool,
device: torch.device,
dtype: torch.dtype,
pos_embed_max_size: Optional[int] = None,
operations = None,
):
super().__init__()
self.main_model_double = main_model_double
self.dtype = dtype
self.hidden_size = num_attention_heads * attention_head_dim
self.patch_size = patch_size
self.x_embedder = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=self.hidden_size,
strict_img_size=pos_embed_max_size is None,
device=device,
dtype=dtype,
operations=operations,
)
self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations)
self.double_y_emb = double_y_emb
if self.double_y_emb:
self.orig_y_embedder = VectorEmbedder(
adm_in_channels, self.hidden_size, dtype, device, operations=operations
)
self.y_embedder = VectorEmbedder(
self.hidden_size, self.hidden_size, dtype, device, operations=operations
)
else:
self.y_embedder = VectorEmbedder(
adm_in_channels, self.hidden_size, dtype, device, operations=operations
)
self.transformer_blocks = nn.ModuleList(
DismantledBlock(
hidden_size=self.hidden_size, num_heads=num_attention_heads, qkv_bias=True,
dtype=dtype, device=device, operations=operations
)
for _ in range(num_layers)
)
# self.use_y_embedder = pooled_projection_dim != self.time_text_embed.text_embedder.linear_1.in_features
# TODO double check this logic when 8b
self.use_y_embedder = True
self.controlnet_blocks = nn.ModuleList([])
for _ in range(len(self.transformer_blocks)):
controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
self.controlnet_blocks.append(controlnet_block)
self.pos_embed_input = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=self.hidden_size,
strict_img_size=False,
device=device,
dtype=dtype,
operations=operations,
)
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
hint = None,
) -> Tuple[Tensor, List[Tensor]]:
x_shape = list(x.shape)
x = self.x_embedder(x)
if not self.double_y_emb:
h = (x_shape[-2] + 1) // self.patch_size
w = (x_shape[-1] + 1) // self.patch_size
x += get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=x.device)
c = self.t_embedder(timesteps, dtype=x.dtype)
if y is not None and self.y_embedder is not None:
if self.double_y_emb:
y = self.orig_y_embedder(y)
y = self.y_embedder(y)
c = c + y
x = x + self.pos_embed_input(hint)
block_out = ()
repeat = math.ceil(self.main_model_double / len(self.transformer_blocks))
for i in range(len(self.transformer_blocks)):
out = self.transformer_blocks[i](x, c)
if not self.double_y_emb:
x = out
block_out += (self.controlnet_blocks[i](out),) * repeat
return {"output": block_out}

View File

@@ -60,8 +60,10 @@ fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If
fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
fpunet_group = parser.add_mutually_exclusive_group()
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the UNET in bf16. This should only be used for testing stuff.")
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Store unet weights in fp16.")
fpunet_group.add_argument("--fp32-unet", action="store_true", help="Run the diffusion model in fp32.")
fpunet_group.add_argument("--fp64-unet", action="store_true", help="Run the diffusion model in fp64.")
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diffusion model in bf16.")
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")

View File

@@ -16,13 +16,18 @@ class Output:
def __setitem__(self, key, item):
setattr(self, key, item)
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]):
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
std = torch.tensor(std, device=image.device, dtype=image.dtype)
image = image.movedim(-1, 1)
if not (image.shape[2] == size and image.shape[3] == size):
scale = (size / min(image.shape[2], image.shape[3]))
image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True)
if crop:
scale = (size / min(image.shape[2], image.shape[3]))
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
else:
scale_size = (size, size)
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
h = (image.shape[2] - size)//2
w = (image.shape[3] - size)//2
image = image[:,:,h:h+size,w:w+size]
@@ -51,9 +56,9 @@ class ClipVisionModel():
def get_sd(self):
return self.model.state_dict()
def encode_image(self, image):
def encode_image(self, image, crop=True):
comfy.model_management.load_model_gpu(self.patcher)
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std).float()
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
outputs = Output()

View File

@@ -35,7 +35,7 @@ import comfy.ldm.cascade.controlnet
import comfy.cldm.mmdit
import comfy.ldm.hydit.controlnet
import comfy.ldm.flux.controlnet
import comfy.cldm.dit_embedder
def broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
@@ -78,6 +78,7 @@ class ControlBase:
self.concat_mask = False
self.extra_concat_orig = []
self.extra_concat = None
self.preprocess_image = lambda a: a
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
self.cond_hint_original = cond_hint
@@ -129,6 +130,7 @@ class ControlBase:
c.strength_type = self.strength_type
c.concat_mask = self.concat_mask
c.extra_concat_orig = self.extra_concat_orig.copy()
c.preprocess_image = self.preprocess_image
def inference_memory_requirements(self, dtype):
if self.previous_controlnet is not None:
@@ -181,7 +183,7 @@ class ControlBase:
class ControlNet(ControlBase):
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False):
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False, preprocess_image=lambda a: a):
super().__init__()
self.control_model = control_model
self.load_device = load_device
@@ -196,6 +198,7 @@ class ControlNet(ControlBase):
self.extra_conds += extra_conds
self.strength_type = strength_type
self.concat_mask = concat_mask
self.preprocess_image = preprocess_image
def get_control(self, x_noisy, t, cond, batched_number):
control_prev = None
@@ -224,6 +227,7 @@ class ControlNet(ControlBase):
if self.latent_format is not None:
raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
self.cond_hint = self.preprocess_image(self.cond_hint)
if self.vae is not None:
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
@@ -427,6 +431,7 @@ def controlnet_load_state_dict(control_model, sd):
logging.debug("unexpected controlnet keys: {}".format(unexpected))
return control_model
def load_controlnet_mmdit(sd, model_options={}):
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
@@ -448,6 +453,82 @@ def load_controlnet_mmdit(sd, model_options={}):
return control
class ControlNetSD35(ControlNet):
def pre_run(self, model, percent_to_timestep_function):
if self.control_model.double_y_emb:
missing, unexpected = self.control_model.orig_y_embedder.load_state_dict(model.diffusion_model.y_embedder.state_dict(), strict=False)
else:
missing, unexpected = self.control_model.x_embedder.load_state_dict(model.diffusion_model.x_embedder.state_dict(), strict=False)
super().pre_run(model, percent_to_timestep_function)
def copy(self):
c = ControlNetSD35(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
c.control_model = self.control_model
c.control_model_wrapped = self.control_model_wrapped
self.copy_to(c)
return c
def load_controlnet_sd35(sd, model_options={}):
control_type = -1
if "control_type" in sd:
control_type = round(sd.pop("control_type").item())
# blur_cnet = control_type == 0
canny_cnet = control_type == 1
depth_cnet = control_type == 2
new_sd = {}
for k in comfy.utils.MMDIT_MAP_BASIC:
if k[1] in sd:
new_sd[k[0]] = sd.pop(k[1])
for k in sd:
new_sd[k] = sd[k]
sd = new_sd
y_emb_shape = sd["y_embedder.mlp.0.weight"].shape
depth = y_emb_shape[0] // 64
hidden_size = 64 * depth
num_heads = depth
head_dim = hidden_size // num_heads
num_blocks = comfy.model_detection.count_blocks(new_sd, 'transformer_blocks.{}.')
load_device = comfy.model_management.get_torch_device()
offload_device = comfy.model_management.unet_offload_device()
unet_dtype = comfy.model_management.unet_dtype(model_params=-1)
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
operations = model_options.get("custom_operations", None)
if operations is None:
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
control_model = comfy.cldm.dit_embedder.ControlNetEmbedder(img_size=None,
patch_size=2,
in_chans=16,
num_layers=num_blocks,
main_model_double=depth,
double_y_emb=y_emb_shape[0] == y_emb_shape[1],
attention_head_dim=head_dim,
num_attention_heads=num_heads,
adm_in_channels=2048,
device=offload_device,
dtype=unet_dtype,
operations=operations)
control_model = controlnet_load_state_dict(control_model, sd)
latent_format = comfy.latent_formats.SD3()
preprocess_image = lambda a: a
if canny_cnet:
preprocess_image = lambda a: (a * 255 * 0.5 + 0.5)
elif depth_cnet:
preprocess_image = lambda a: 1.0 - a
control = ControlNetSD35(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, preprocess_image=preprocess_image)
return control
def load_controlnet_hunyuandit(controlnet_data, model_options={}):
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(controlnet_data, model_options=model_options)
@@ -560,7 +641,10 @@ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
return load_controlnet_flux_xlabs_mistoline(controlnet_data, model_options=model_options)
elif "pos_embed_input.proj.weight" in controlnet_data:
return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
if "transformer_blocks.0.adaLN_modulation.1.bias" in controlnet_data:
return load_controlnet_sd35(controlnet_data, model_options=model_options) #Stability sd3.5 format
else:
return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
elif "controlnet_x_embedder.weight" in controlnet_data:
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux

View File

@@ -280,6 +280,9 @@ def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None,
@torch.no_grad()
def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
return sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
"""Ancestral sampling with DPM-Solver second-order steps."""
extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
@@ -306,6 +309,39 @@ def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, dis
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
return x
@torch.no_grad()
def sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""Ancestral sampling with DPM-Solver second-order steps."""
extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
sigma_down = sigmas[i+1] * downstep_ratio
alpha_ip1 = 1 - sigmas[i+1]
alpha_down = 1 - sigma_down
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
d = to_d(x, sigmas[i], denoised)
if sigma_down == 0:
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
else:
# DPM-Solver-2
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
dt_1 = sigma_mid - sigmas[i]
dt_2 = sigma_down - sigmas[i]
x_2 = x + d * dt_1
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
return x
def linear_multistep_coeff(order, t, i, j):
if order - 1 > i:

View File

@@ -216,3 +216,139 @@ class Mochi(LatentFormat):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean
class LTXV(LatentFormat):
latent_channels = 128
def __init__(self):
self.latent_rgb_factors = [
[ 1.1202e-02, -6.3815e-04, -1.0021e-02],
[ 8.6031e-02, 6.5813e-02, 9.5409e-04],
[-1.2576e-02, -7.5734e-03, -4.0528e-03],
[ 9.4063e-03, -2.1688e-03, 2.6093e-03],
[ 3.7636e-03, 1.2765e-02, 9.1548e-03],
[ 2.1024e-02, -5.2973e-03, 3.4373e-03],
[-8.8896e-03, -1.9703e-02, -1.8761e-02],
[-1.3160e-02, -1.0523e-02, 1.9709e-03],
[-1.5152e-03, -6.9891e-03, -7.5810e-03],
[-1.7247e-03, 4.6560e-04, -3.3839e-03],
[ 1.3617e-02, 4.7077e-03, -2.0045e-03],
[ 1.0256e-02, 7.7318e-03, 1.3948e-02],
[-1.6108e-02, -6.2151e-03, 1.1561e-03],
[ 7.3407e-03, 1.5628e-02, 4.4865e-04],
[ 9.5357e-04, -2.9518e-03, -1.4760e-02],
[ 1.9143e-02, 1.0868e-02, 1.2264e-02],
[ 4.4575e-03, 3.6682e-05, -6.8508e-03],
[-4.5681e-04, 3.2570e-03, 7.7929e-03],
[ 3.3902e-02, 3.3405e-02, 3.7454e-02],
[-2.3001e-02, -2.4877e-03, -3.1033e-03],
[ 5.0265e-02, 3.8841e-02, 3.3539e-02],
[-4.1018e-03, -1.1095e-03, 1.5859e-03],
[-1.2689e-01, -1.3107e-01, -2.1005e-01],
[ 2.6276e-02, 1.4189e-02, -3.5963e-03],
[-4.8679e-03, 8.8486e-03, 7.8029e-03],
[-1.6610e-03, -4.8597e-03, -5.2060e-03],
[-2.1010e-03, 2.3610e-03, 9.3796e-03],
[-2.2482e-02, -2.1305e-02, -1.5087e-02],
[-1.5753e-02, -1.0646e-02, -6.5083e-03],
[-4.6975e-03, 5.0288e-03, -6.7390e-03],
[ 1.1951e-02, 2.0712e-02, 1.6191e-02],
[-6.3704e-03, -8.4827e-03, -9.5483e-03],
[ 7.2610e-03, -9.9326e-03, -2.2978e-02],
[-9.1904e-04, 6.2882e-03, 9.5720e-03],
[-3.7178e-02, -3.7123e-02, -5.6713e-02],
[-1.3373e-01, -1.0720e-01, -5.3801e-02],
[-5.3702e-03, 8.1256e-03, 8.8397e-03],
[-1.5247e-01, -2.1437e-01, -2.1843e-01],
[ 3.1441e-02, 7.0335e-03, -9.7541e-03],
[ 2.1528e-03, -8.9817e-03, -2.1023e-02],
[ 3.8461e-03, -5.8957e-03, -1.5014e-02],
[-4.3470e-03, -1.2940e-02, -1.5972e-02],
[-5.4781e-03, -1.0842e-02, -3.0204e-03],
[-6.5347e-03, 3.0806e-03, -1.0163e-02],
[-5.0414e-03, -7.1503e-03, -8.9686e-04],
[-8.5851e-03, -2.4351e-03, 1.0674e-03],
[-9.0016e-03, -9.6493e-03, 1.5692e-03],
[ 5.0914e-03, 1.2099e-02, 1.9968e-02],
[ 1.3758e-02, 1.1669e-02, 8.1958e-03],
[-1.0518e-02, -1.1575e-02, -4.1307e-03],
[-2.8410e-02, -3.1266e-02, -2.2149e-02],
[ 2.9336e-03, 3.6511e-02, 1.8717e-02],
[-1.6703e-02, -1.6696e-02, -4.4529e-03],
[ 4.8818e-02, 4.0063e-02, 8.7410e-03],
[-1.5066e-02, -5.7328e-04, 2.9785e-03],
[-1.7613e-02, -8.1034e-03, 1.3086e-02],
[-9.2633e-03, 1.0803e-02, -6.3489e-03],
[ 3.0851e-03, 4.7750e-04, 1.2347e-02],
[-2.2785e-02, -2.3043e-02, -2.6005e-02],
[-2.4787e-02, -1.5389e-02, -2.2104e-02],
[-2.3572e-02, 1.0544e-03, 1.2361e-02],
[-7.8915e-03, -1.2271e-03, -6.0968e-03],
[-1.1478e-02, -1.2543e-03, 6.2679e-03],
[-5.4229e-02, 2.6644e-02, 6.3394e-03],
[ 4.4216e-03, -7.3338e-03, -1.0464e-02],
[-4.5013e-03, 1.6082e-03, 1.4420e-02],
[ 1.3673e-02, 8.8877e-03, 4.1253e-03],
[-1.0145e-02, 9.0072e-03, 1.5695e-02],
[-5.6234e-03, 1.1847e-03, 8.1261e-03],
[-3.7171e-03, -5.3538e-03, 1.2590e-03],
[ 2.9476e-02, 2.1424e-02, 3.0424e-02],
[-3.4925e-02, -2.4340e-02, -2.5316e-02],
[-3.4127e-02, -2.2406e-02, -1.0589e-02],
[-1.7342e-02, -1.3249e-02, -1.0719e-02],
[-2.1478e-03, -8.6051e-03, -2.9878e-03],
[ 1.2089e-03, -4.2391e-03, -6.8569e-03],
[ 9.0411e-04, -6.6886e-03, -6.7547e-05],
[ 1.6048e-02, -1.0057e-02, -2.8929e-02],
[ 1.2290e-03, 1.0163e-02, 1.8861e-02],
[ 1.7264e-02, 2.7257e-04, 1.3785e-02],
[-1.3482e-02, -3.6427e-03, 6.7481e-04],
[ 4.6782e-03, -5.2423e-03, 2.4467e-03],
[-5.9113e-03, -6.2244e-03, -1.8162e-03],
[ 1.5496e-02, 1.4582e-02, 1.9514e-03],
[ 7.4958e-03, 1.5886e-03, -8.2305e-03],
[ 1.9086e-02, 1.6360e-03, -3.9674e-03],
[-5.7021e-03, -2.7307e-03, -4.1066e-03],
[ 1.7450e-03, 1.4602e-02, 2.5794e-02],
[-8.2788e-04, 2.2902e-03, 4.5161e-03],
[ 1.1632e-02, 8.9193e-03, -7.2813e-03],
[ 7.5721e-03, 2.6784e-03, 1.1393e-02],
[ 5.1939e-03, 3.6903e-03, 1.4049e-02],
[-1.8383e-02, -2.2529e-02, -2.4477e-02],
[ 5.8842e-04, -5.7874e-03, -1.4770e-02],
[-1.6125e-02, -8.6101e-03, -1.4533e-02],
[ 2.0540e-02, 2.0729e-02, 6.4338e-03],
[ 3.3587e-03, -1.1226e-02, -1.6444e-02],
[-1.4742e-03, -1.0489e-02, 1.7097e-03],
[ 2.8130e-02, 2.3546e-02, 3.2791e-02],
[-1.8532e-02, -1.2842e-02, -8.7756e-03],
[-8.0533e-03, -1.0771e-02, -1.7536e-02],
[-3.9009e-03, 1.6150e-02, 3.3359e-02],
[-7.4554e-03, -1.4154e-02, -6.1910e-03],
[ 3.4734e-03, -1.1370e-02, -1.0581e-02],
[ 1.1476e-02, 3.9281e-03, 2.8231e-03],
[ 7.1639e-03, -1.4741e-03, -3.8066e-03],
[ 2.2250e-03, -8.7552e-03, -9.5719e-03],
[ 2.4146e-02, 2.1696e-02, 2.8056e-02],
[-5.4365e-03, -2.4291e-02, -1.7802e-02],
[ 7.4263e-03, 1.0510e-02, 1.2705e-02],
[ 6.2669e-03, 6.2658e-03, 1.9211e-02],
[ 1.6378e-02, 9.4933e-03, 6.6971e-03],
[ 1.7173e-02, 2.3601e-02, 2.3296e-02],
[-1.4568e-02, -9.8279e-03, -1.1556e-02],
[ 1.4431e-02, 1.4430e-02, 6.6362e-03],
[-6.8230e-03, 1.8863e-02, 1.4555e-02],
[ 6.1156e-03, 3.4700e-03, -2.6662e-03],
[-2.6983e-03, -5.9402e-03, -9.2276e-03],
[ 1.0235e-02, 7.4173e-03, -7.6243e-03],
[-1.3255e-02, 1.9322e-02, -9.2153e-04],
[ 2.4222e-03, -4.8039e-03, -1.5759e-02],
[ 2.6244e-02, 2.5951e-02, 2.0249e-02],
[ 1.5711e-02, 1.8498e-02, 2.7407e-03],
[-2.1714e-03, 4.7214e-03, -2.2443e-02],
[-7.4747e-03, 7.4166e-03, 1.4430e-02],
[-8.3906e-03, -7.9776e-03, 9.7927e-03],
[ 3.8321e-02, 9.6622e-03, -1.9268e-02],
[-1.4605e-02, -6.7032e-03, 3.9675e-03]
]
self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]

View File

@@ -2,7 +2,7 @@ import torch
import comfy.ops
def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
if padding_mode == "circular" and torch.jit.is_tracing() or torch.jit.is_scripting():
if padding_mode == "circular" and (torch.jit.is_tracing() or torch.jit.is_scripting()):
padding_mode = "reflect"
pad_h = (patch_size[0] - img.shape[-2] % patch_size[0]) % patch_size[0]
pad_w = (patch_size[1] - img.shape[-1] % patch_size[1]) % patch_size[1]

View File

@@ -287,7 +287,7 @@ class HunYuanDiT(nn.Module):
style=None,
return_dict=False,
control=None,
transformer_options=None,
transformer_options={},
):
"""
Forward pass of the encoder.
@@ -315,8 +315,7 @@ class HunYuanDiT(nn.Module):
return_dict: bool
Whether to return a dictionary.
"""
#import pdb
#pdb.set_trace()
patches_replace = transformer_options.get("patches_replace", {})
encoder_hidden_states = context
text_states = encoder_hidden_states # 2,77,1024
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048
@@ -364,6 +363,8 @@ class HunYuanDiT(nn.Module):
# Concatenate all extra vectors
c = t + self.extra_embedder(extra_vec) # [B, D]
blocks_replace = patches_replace.get("dit", {})
controls = None
if control:
controls = control.get("output", None)
@@ -375,9 +376,20 @@ class HunYuanDiT(nn.Module):
skip = skips.pop() + controls.pop().to(dtype=x.dtype)
else:
skip = skips.pop()
x = block(x, c, text_states, freqs_cis_img, skip) # (N, L, D)
else:
x = block(x, c, text_states, freqs_cis_img) # (N, L, D)
skip = None
if ("double_block", layer) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], args["vec"], args["txt"], args["pe"], args["skip"])
return out
out = blocks_replace[("double_block", layer)]({"img": x, "txt": text_states, "vec": c, "pe": freqs_cis_img, "skip": skip}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, c, text_states, freqs_cis_img, skip) # (N, L, D)
if layer < (self.depth // 2 - 1):
skips.append(x)

View File

@@ -0,0 +1,514 @@
import torch
from torch import nn
import comfy.ldm.modules.attention
from comfy.ldm.genmo.joint_model.layers import RMSNorm
import comfy.ldm.common_dit
from einops import rearrange
import math
from typing import Dict, Optional, Tuple
from .symmetric_patchifier import SymmetricPatchifier
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
Args
timesteps (torch.Tensor):
a 1-D Tensor of N indices, one per batch element. These may be fractional.
embedding_dim (int):
the dimension of the output.
flip_sin_to_cos (bool):
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
downscale_freq_shift (float):
Controls the delta between frequencies between dimensions
scale (float):
Scaling factor applied to the embeddings.
max_period (int):
Controls the maximum frequency of the embeddings
Returns
torch.Tensor: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
class TimestepEmbedding(nn.Module):
def __init__(
self,
in_channels: int,
time_embed_dim: int,
act_fn: str = "silu",
out_dim: int = None,
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
sample_proj_bias=True,
dtype=None, device=None, operations=None,
):
super().__init__()
self.linear_1 = operations.Linear(in_channels, time_embed_dim, sample_proj_bias, dtype=dtype, device=device)
if cond_proj_dim is not None:
self.cond_proj = operations.Linear(cond_proj_dim, in_channels, bias=False, dtype=dtype, device=device)
else:
self.cond_proj = None
self.act = nn.SiLU()
if out_dim is not None:
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device)
if post_act_fn is None:
self.post_act = None
# else:
# self.post_act = get_activation(post_act_fn)
def forward(self, sample, condition=None):
if condition is not None:
sample = sample + self.cond_proj(condition)
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
if self.post_act is not None:
sample = self.post_act(sample)
return sample
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
self.scale = scale
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
scale=self.scale,
)
return t_emb
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
"""
For PixArt-Alpha.
Reference:
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
"""
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
super().__init__()
self.outdim = size_emb_dim
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations)
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
return timesteps_emb
class AdaLayerNormSingle(nn.Module):
r"""
Norm layer adaptive layer norm single (adaLN-single).
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
Parameters:
embedding_dim (`int`): The size of each embedding vector.
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
"""
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
super().__init__()
self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions, dtype=dtype, device=device, operations=operations
)
self.silu = nn.SiLU()
self.linear = operations.Linear(embedding_dim, 6 * embedding_dim, bias=True, dtype=dtype, device=device)
def forward(
self,
timestep: torch.Tensor,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
batch_size: Optional[int] = None,
hidden_dtype: Optional[torch.dtype] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# No modulation happening here.
added_cond_kwargs = added_cond_kwargs or {"resolution": None, "aspect_ratio": None}
embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
return self.linear(self.silu(embedded_timestep)), embedded_timestep
class PixArtAlphaTextProjection(nn.Module):
"""
Projects caption embeddings. Also handles dropout for classifier-free guidance.
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None):
super().__init__()
if out_features is None:
out_features = hidden_size
self.linear_1 = operations.Linear(in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device)
if act_fn == "gelu_tanh":
self.act_1 = nn.GELU(approximate="tanh")
elif act_fn == "silu":
self.act_1 = nn.SiLU()
else:
raise ValueError(f"Unknown activation function: {act_fn}")
self.linear_2 = operations.Linear(in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device)
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class GELU_approx(nn.Module):
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=None):
super().__init__()
self.proj = operations.Linear(dim_in, dim_out, dtype=dtype, device=device)
def forward(self, x):
return torch.nn.functional.gelu(self.proj(x), approximate="tanh")
class FeedForward(nn.Module):
def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=None):
super().__init__()
inner_dim = int(dim * mult)
project_in = GELU_approx(dim, inner_dim, dtype=dtype, device=device, operations=operations)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
)
def forward(self, x):
return self.net(x)
def apply_rotary_emb(input_tensor, freqs_cis): #TODO: remove duplicate funcs and pick the best/fastest one
cos_freqs = freqs_cis[0]
sin_freqs = freqs_cis[1]
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
t1, t2 = t_dup.unbind(dim=-1)
t_dup = torch.stack((-t2, t1), dim=-1)
input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)")
out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs
return out
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None):
super().__init__()
inner_dim = dim_head * heads
context_dim = query_dim if context_dim is None else context_dim
self.attn_precision = attn_precision
self.heads = heads
self.dim_head = dim_head
self.q_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
self.k_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
def forward(self, x, context=None, mask=None, pe=None):
q = self.to_q(x)
context = x if context is None else context
k = self.to_k(context)
v = self.to_v(context)
q = self.q_norm(q)
k = self.k_norm(k)
if pe is not None:
q = apply_rotary_emb(q, pe)
k = apply_rotary_emb(k, pe)
if mask is None:
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
else:
out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
return self.to_out(out)
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None):
super().__init__()
self.attn_precision = attn_precision
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, context_dim=None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
self.ff = FeedForward(dim, dim_out=dim, glu=True, dtype=dtype, device=device, operations=operations)
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype))
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe) * gate_msa
x += self.attn2(x, context=context, mask=attention_mask)
y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
x += self.ff(y) * gate_mlp
return x
def get_fractional_positions(indices_grid, max_pos):
fractional_positions = torch.stack(
[
indices_grid[:, i] / max_pos[i]
for i in range(3)
],
dim=-1,
)
return fractional_positions
def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]):
dtype = torch.float32 #self.dtype
fractional_positions = get_fractional_positions(indices_grid, max_pos)
start = 1
end = theta
device = fractional_positions.device
indices = theta ** (
torch.linspace(
math.log(start, theta),
math.log(end, theta),
dim // 6,
device=device,
dtype=dtype,
)
)
indices = indices.to(dtype=dtype)
indices = indices * math.pi / 2
freqs = (
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
.transpose(-1, -2)
.flatten(2)
)
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
if dim % 6 != 0:
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
return cos_freq.to(out_dtype), sin_freq.to(out_dtype)
class LTXVModel(torch.nn.Module):
def __init__(self,
in_channels=128,
cross_attention_dim=2048,
attention_head_dim=64,
num_attention_heads=32,
caption_channels=4096,
num_layers=28,
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048],
dtype=None, device=None, operations=None, **kwargs):
super().__init__()
self.dtype = dtype
self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device)
self.adaln_single = AdaLayerNormSingle(
self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=operations
)
# self.adaln_single.linear = operations.Linear(self.inner_dim, 4 * self.inner_dim, bias=True, dtype=dtype, device=device)
self.caption_projection = PixArtAlphaTextProjection(
in_features=caption_channels, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations
)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
num_attention_heads,
attention_head_dim,
context_dim=cross_attention_dim,
# attn_precision=attn_precision,
dtype=dtype, device=device, operations=operations
)
for d in range(num_layers)
]
)
self.scale_shift_table = nn.Parameter(torch.empty(2, self.inner_dim, dtype=dtype, device=device))
self.norm_out = operations.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.proj_out = operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device)
self.patchifier = SymmetricPatchifier(1)
def forward(self, x, timestep, context, attention_mask, frame_rate=25, guiding_latent=None, transformer_options={}, **kwargs):
patches_replace = transformer_options.get("patches_replace", {})
indices_grid = self.patchifier.get_grid(
orig_num_frames=x.shape[2],
orig_height=x.shape[3],
orig_width=x.shape[4],
batch_size=x.shape[0],
scale_grid=((1 / frame_rate) * 8, 32, 32),
device=x.device,
)
if guiding_latent is not None:
ts = torch.ones([x.shape[0], 1, x.shape[2], x.shape[3], x.shape[4]], device=x.device, dtype=x.dtype)
input_ts = timestep.view([timestep.shape[0]] + [1] * (x.ndim - 1))
ts *= input_ts
ts[:, :, 0] = 0.0
timestep = self.patchifier.patchify(ts)
input_x = x.clone()
x[:, :, 0] = guiding_latent[:, :, 0]
orig_shape = list(x.shape)
x = self.patchifier.patchify(x)
x = self.patchify_proj(x)
timestep = timestep * 1000.0
attention_mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1]))
attention_mask = attention_mask.masked_fill(attention_mask.to(torch.bool), float("-inf")) # not sure about this
# attention_mask = (context != 0).any(dim=2).to(dtype=x.dtype)
pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype)
batch_size = x.shape[0]
timestep, embedded_timestep = self.adaln_single(
timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=x.dtype,
)
# Second dimension is 1 or number of tokens (if timestep_per_token)
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
embedded_timestep = embedded_timestep.view(
batch_size, -1, embedded_timestep.shape[-1]
)
# 2. Blocks
if self.caption_projection is not None:
batch_size = x.shape[0]
context = self.caption_projection(context)
context = context.view(
batch_size, -1, x.shape[-1]
)
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.transformer_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(
x,
context=context,
attention_mask=attention_mask,
timestep=timestep,
pe=pe
)
# 3. Output
scale_shift_values = (
self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + embedded_timestep[:, :, None]
)
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
x = self.norm_out(x)
# Modulation
x = x * (1 + scale) + shift
x = self.proj_out(x)
x = self.patchifier.unpatchify(
latents=x,
output_height=orig_shape[3],
output_width=orig_shape[4],
output_num_frames=orig_shape[2],
out_channels=orig_shape[1] // math.prod(self.patchifier.patch_size),
)
if guiding_latent is not None:
x[:, :, 0] = (input_x[:, :, 0] - guiding_latent[:, :, 0]) / input_ts[:, :, 0]
# print("res", x)
return x

View File

@@ -0,0 +1,105 @@
from abc import ABC, abstractmethod
from typing import Tuple
import torch
from einops import rearrange
from torch import Tensor
def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor:
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
)
elif dims_to_append == 0:
return x
return x[(...,) + (None,) * dims_to_append]
class Patchifier(ABC):
def __init__(self, patch_size: int):
super().__init__()
self._patch_size = (1, patch_size, patch_size)
@abstractmethod
def patchify(
self, latents: Tensor, frame_rates: Tensor, scale_grid: bool
) -> Tuple[Tensor, Tensor]:
pass
@abstractmethod
def unpatchify(
self,
latents: Tensor,
output_height: int,
output_width: int,
output_num_frames: int,
out_channels: int,
) -> Tuple[Tensor, Tensor]:
pass
@property
def patch_size(self):
return self._patch_size
def get_grid(
self, orig_num_frames, orig_height, orig_width, batch_size, scale_grid, device
):
f = orig_num_frames // self._patch_size[0]
h = orig_height // self._patch_size[1]
w = orig_width // self._patch_size[2]
grid_h = torch.arange(h, dtype=torch.float32, device=device)
grid_w = torch.arange(w, dtype=torch.float32, device=device)
grid_f = torch.arange(f, dtype=torch.float32, device=device)
grid = torch.meshgrid(grid_f, grid_h, grid_w)
grid = torch.stack(grid, dim=0)
grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
if scale_grid is not None:
for i in range(3):
if isinstance(scale_grid[i], Tensor):
scale = append_dims(scale_grid[i], grid.ndim - 1)
else:
scale = scale_grid[i]
grid[:, i, ...] = grid[:, i, ...] * scale * self._patch_size[i]
grid = rearrange(grid, "b c f h w -> b c (f h w)", b=batch_size)
return grid
class SymmetricPatchifier(Patchifier):
def patchify(
self,
latents: Tensor,
) -> Tuple[Tensor, Tensor]:
latents = rearrange(
latents,
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)",
p1=self._patch_size[0],
p2=self._patch_size[1],
p3=self._patch_size[2],
)
return latents
def unpatchify(
self,
latents: Tensor,
output_height: int,
output_width: int,
output_num_frames: int,
out_channels: int,
) -> Tuple[Tensor, Tensor]:
output_height = output_height // self._patch_size[1]
output_width = output_width // self._patch_size[2]
latents = rearrange(
latents,
"b (f h w) (c p q) -> b c f (h p) (w q) ",
f=output_num_frames,
h=output_height,
w=output_width,
p=self._patch_size[1],
q=self._patch_size[2],
)
return latents

View File

@@ -0,0 +1,64 @@
from typing import Tuple, Union
import torch
import torch.nn as nn
import comfy.ops
ops = comfy.ops.disable_weight_init
class CausalConv3d(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size: int = 3,
stride: Union[int, Tuple[int]] = 1,
dilation: int = 1,
groups: int = 1,
**kwargs,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
kernel_size = (kernel_size, kernel_size, kernel_size)
self.time_kernel_size = kernel_size[0]
dilation = (dilation, 1, 1)
height_pad = kernel_size[1] // 2
width_pad = kernel_size[2] // 2
padding = (0, height_pad, width_pad)
self.conv = ops.Conv3d(
in_channels,
out_channels,
kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
padding_mode="zeros",
groups=groups,
)
def forward(self, x, causal: bool = True):
if causal:
first_frame_pad = x[:, :, :1, :, :].repeat(
(1, 1, self.time_kernel_size - 1, 1, 1)
)
x = torch.concatenate((first_frame_pad, x), dim=2)
else:
first_frame_pad = x[:, :, :1, :, :].repeat(
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
)
last_frame_pad = x[:, :, -1:, :, :].repeat(
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
)
x = torch.concatenate((first_frame_pad, x, last_frame_pad), dim=2)
x = self.conv(x)
return x
@property
def weight(self):
return self.conv.weight

View File

@@ -0,0 +1,698 @@
import torch
from torch import nn
from functools import partial
import math
from einops import rearrange
from typing import Any, Mapping, Optional, Tuple, Union, List
from .conv_nd_factory import make_conv_nd, make_linear_nd
from .pixel_norm import PixelNorm
class Encoder(nn.Module):
r"""
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
Args:
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
The number of dimensions to use in convolutions.
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 3):
The number of output channels.
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
The blocks to use. Each block is a tuple of the block name and the number of layers.
base_channels (`int`, *optional*, defaults to 128):
The number of output channels for the first convolutional layer.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups for normalization.
patch_size (`int`, *optional*, defaults to 1):
The patch size to use. Should be a power of 2.
norm_layer (`str`, *optional*, defaults to `group_norm`):
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
latent_log_var (`str`, *optional*, defaults to `per_channel`):
The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`.
"""
def __init__(
self,
dims: Union[int, Tuple[int, int]] = 3,
in_channels: int = 3,
out_channels: int = 3,
blocks=[("res_x", 1)],
base_channels: int = 128,
norm_num_groups: int = 32,
patch_size: Union[int, Tuple[int]] = 1,
norm_layer: str = "group_norm", # group_norm, pixel_norm
latent_log_var: str = "per_channel",
):
super().__init__()
self.patch_size = patch_size
self.norm_layer = norm_layer
self.latent_channels = out_channels
self.latent_log_var = latent_log_var
self.blocks_desc = blocks
in_channels = in_channels * patch_size**2
output_channel = base_channels
self.conv_in = make_conv_nd(
dims=dims,
in_channels=in_channels,
out_channels=output_channel,
kernel_size=3,
stride=1,
padding=1,
causal=True,
)
self.down_blocks = nn.ModuleList([])
for block_name, block_params in blocks:
input_channel = output_channel
if isinstance(block_params, int):
block_params = {"num_layers": block_params}
if block_name == "res_x":
block = UNetMidBlock3D(
dims=dims,
in_channels=input_channel,
num_layers=block_params["num_layers"],
resnet_eps=1e-6,
resnet_groups=norm_num_groups,
norm_layer=norm_layer,
)
elif block_name == "res_x_y":
output_channel = block_params.get("multiplier", 2) * output_channel
block = ResnetBlock3D(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
eps=1e-6,
groups=norm_num_groups,
norm_layer=norm_layer,
)
elif block_name == "compress_time":
block = make_conv_nd(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
kernel_size=3,
stride=(2, 1, 1),
causal=True,
)
elif block_name == "compress_space":
block = make_conv_nd(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
kernel_size=3,
stride=(1, 2, 2),
causal=True,
)
elif block_name == "compress_all":
block = make_conv_nd(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
kernel_size=3,
stride=(2, 2, 2),
causal=True,
)
elif block_name == "compress_all_x_y":
output_channel = block_params.get("multiplier", 2) * output_channel
block = make_conv_nd(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
kernel_size=3,
stride=(2, 2, 2),
causal=True,
)
else:
raise ValueError(f"unknown block: {block_name}")
self.down_blocks.append(block)
# out
if norm_layer == "group_norm":
self.conv_norm_out = nn.GroupNorm(
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
)
elif norm_layer == "pixel_norm":
self.conv_norm_out = PixelNorm()
elif norm_layer == "layer_norm":
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
self.conv_act = nn.SiLU()
conv_out_channels = out_channels
if latent_log_var == "per_channel":
conv_out_channels *= 2
elif latent_log_var == "uniform":
conv_out_channels += 1
elif latent_log_var != "none":
raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
self.conv_out = make_conv_nd(
dims, output_channel, conv_out_channels, 3, padding=1, causal=True
)
self.gradient_checkpointing = False
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
r"""The forward method of the `Encoder` class."""
sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
sample = self.conv_in(sample)
checkpoint_fn = (
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
if self.gradient_checkpointing and self.training
else lambda x: x
)
for down_block in self.down_blocks:
sample = checkpoint_fn(down_block)(sample)
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if self.latent_log_var == "uniform":
last_channel = sample[:, -1:, ...]
num_dims = sample.dim()
if num_dims == 4:
# For shape (B, C, H, W)
repeated_last_channel = last_channel.repeat(
1, sample.shape[1] - 2, 1, 1
)
sample = torch.cat([sample, repeated_last_channel], dim=1)
elif num_dims == 5:
# For shape (B, C, F, H, W)
repeated_last_channel = last_channel.repeat(
1, sample.shape[1] - 2, 1, 1, 1
)
sample = torch.cat([sample, repeated_last_channel], dim=1)
else:
raise ValueError(f"Invalid input shape: {sample.shape}")
return sample
class Decoder(nn.Module):
r"""
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
Args:
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
The number of dimensions to use in convolutions.
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 3):
The number of output channels.
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
The blocks to use. Each block is a tuple of the block name and the number of layers.
base_channels (`int`, *optional*, defaults to 128):
The number of output channels for the first convolutional layer.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups for normalization.
patch_size (`int`, *optional*, defaults to 1):
The patch size to use. Should be a power of 2.
norm_layer (`str`, *optional*, defaults to `group_norm`):
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
causal (`bool`, *optional*, defaults to `True`):
Whether to use causal convolutions or not.
"""
def __init__(
self,
dims,
in_channels: int = 3,
out_channels: int = 3,
blocks=[("res_x", 1)],
base_channels: int = 128,
layers_per_block: int = 2,
norm_num_groups: int = 32,
patch_size: int = 1,
norm_layer: str = "group_norm",
causal: bool = True,
):
super().__init__()
self.patch_size = patch_size
self.layers_per_block = layers_per_block
out_channels = out_channels * patch_size**2
self.causal = causal
self.blocks_desc = blocks
# Compute output channel to be product of all channel-multiplier blocks
output_channel = base_channels
for block_name, block_params in list(reversed(blocks)):
block_params = block_params if isinstance(block_params, dict) else {}
if block_name == "res_x_y":
output_channel = output_channel * block_params.get("multiplier", 2)
self.conv_in = make_conv_nd(
dims,
in_channels,
output_channel,
kernel_size=3,
stride=1,
padding=1,
causal=True,
)
self.up_blocks = nn.ModuleList([])
for block_name, block_params in list(reversed(blocks)):
input_channel = output_channel
if isinstance(block_params, int):
block_params = {"num_layers": block_params}
if block_name == "res_x":
block = UNetMidBlock3D(
dims=dims,
in_channels=input_channel,
num_layers=block_params["num_layers"],
resnet_eps=1e-6,
resnet_groups=norm_num_groups,
norm_layer=norm_layer,
)
elif block_name == "res_x_y":
output_channel = output_channel // block_params.get("multiplier", 2)
block = ResnetBlock3D(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
eps=1e-6,
groups=norm_num_groups,
norm_layer=norm_layer,
)
elif block_name == "compress_time":
block = DepthToSpaceUpsample(
dims=dims, in_channels=input_channel, stride=(2, 1, 1)
)
elif block_name == "compress_space":
block = DepthToSpaceUpsample(
dims=dims, in_channels=input_channel, stride=(1, 2, 2)
)
elif block_name == "compress_all":
block = DepthToSpaceUpsample(
dims=dims,
in_channels=input_channel,
stride=(2, 2, 2),
residual=block_params.get("residual", False),
)
else:
raise ValueError(f"unknown layer: {block_name}")
self.up_blocks.append(block)
if norm_layer == "group_norm":
self.conv_norm_out = nn.GroupNorm(
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
)
elif norm_layer == "pixel_norm":
self.conv_norm_out = PixelNorm()
elif norm_layer == "layer_norm":
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
self.conv_act = nn.SiLU()
self.conv_out = make_conv_nd(
dims, output_channel, out_channels, 3, padding=1, causal=True
)
self.gradient_checkpointing = False
# def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor:
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
r"""The forward method of the `Decoder` class."""
# assert target_shape is not None, "target_shape must be provided"
sample = self.conv_in(sample, causal=self.causal)
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
checkpoint_fn = (
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
if self.gradient_checkpointing and self.training
else lambda x: x
)
sample = sample.to(upscale_dtype)
for up_block in self.up_blocks:
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample, causal=self.causal)
sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
return sample
class UNetMidBlock3D(nn.Module):
"""
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
Args:
in_channels (`int`): The number of input channels.
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
resnet_groups (`int`, *optional*, defaults to 32):
The number of groups to use in the group normalization layers of the resnet blocks.
Returns:
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
in_channels, height, width)`.
"""
def __init__(
self,
dims: Union[int, Tuple[int, int]],
in_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_groups: int = 32,
norm_layer: str = "group_norm",
):
super().__init__()
resnet_groups = (
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
)
self.res_blocks = nn.ModuleList(
[
ResnetBlock3D(
dims=dims,
in_channels=in_channels,
out_channels=in_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
norm_layer=norm_layer,
)
for _ in range(num_layers)
]
)
def forward(
self, hidden_states: torch.FloatTensor, causal: bool = True
) -> torch.FloatTensor:
for resnet in self.res_blocks:
hidden_states = resnet(hidden_states, causal=causal)
return hidden_states
class DepthToSpaceUpsample(nn.Module):
def __init__(self, dims, in_channels, stride, residual=False):
super().__init__()
self.stride = stride
self.out_channels = math.prod(stride) * in_channels
self.conv = make_conv_nd(
dims=dims,
in_channels=in_channels,
out_channels=self.out_channels,
kernel_size=3,
stride=1,
causal=True,
)
self.residual = residual
def forward(self, x, causal: bool = True):
if self.residual:
# Reshape and duplicate the input to match the output shape
x_in = rearrange(
x,
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
p1=self.stride[0],
p2=self.stride[1],
p3=self.stride[2],
)
x_in = x_in.repeat(1, math.prod(self.stride), 1, 1, 1)
if self.stride[0] == 2:
x_in = x_in[:, :, 1:, :, :]
x = self.conv(x, causal=causal)
x = rearrange(
x,
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
p1=self.stride[0],
p2=self.stride[1],
p3=self.stride[2],
)
if self.stride[0] == 2:
x = x[:, :, 1:, :, :]
if self.residual:
x = x + x_in
return x
class LayerNorm(nn.Module):
def __init__(self, dim, eps, elementwise_affine=True) -> None:
super().__init__()
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
def forward(self, x):
x = rearrange(x, "b c d h w -> b d h w c")
x = self.norm(x)
x = rearrange(x, "b d h w c -> b c d h w")
return x
class ResnetBlock3D(nn.Module):
r"""
A Resnet block.
Parameters:
in_channels (`int`): The number of channels in the input.
out_channels (`int`, *optional*, default to be `None`):
The number of output channels for the first conv layer. If None, same as `in_channels`.
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
"""
def __init__(
self,
dims: Union[int, Tuple[int, int]],
in_channels: int,
out_channels: Optional[int] = None,
dropout: float = 0.0,
groups: int = 32,
eps: float = 1e-6,
norm_layer: str = "group_norm",
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
if norm_layer == "group_norm":
self.norm1 = nn.GroupNorm(
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
)
elif norm_layer == "pixel_norm":
self.norm1 = PixelNorm()
elif norm_layer == "layer_norm":
self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True)
self.non_linearity = nn.SiLU()
self.conv1 = make_conv_nd(
dims,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
causal=True,
)
if norm_layer == "group_norm":
self.norm2 = nn.GroupNorm(
num_groups=groups, num_channels=out_channels, eps=eps, affine=True
)
elif norm_layer == "pixel_norm":
self.norm2 = PixelNorm()
elif norm_layer == "layer_norm":
self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = make_conv_nd(
dims,
out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
causal=True,
)
self.conv_shortcut = (
make_linear_nd(
dims=dims, in_channels=in_channels, out_channels=out_channels
)
if in_channels != out_channels
else nn.Identity()
)
self.norm3 = (
LayerNorm(in_channels, eps=eps, elementwise_affine=True)
if in_channels != out_channels
else nn.Identity()
)
def forward(
self,
input_tensor: torch.FloatTensor,
causal: bool = True,
) -> torch.FloatTensor:
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.non_linearity(hidden_states)
hidden_states = self.conv1(hidden_states, causal=causal)
hidden_states = self.norm2(hidden_states)
hidden_states = self.non_linearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states, causal=causal)
input_tensor = self.norm3(input_tensor)
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = input_tensor + hidden_states
return output_tensor
def patchify(x, patch_size_hw, patch_size_t=1):
if patch_size_hw == 1 and patch_size_t == 1:
return x
if x.dim() == 4:
x = rearrange(
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw
)
elif x.dim() == 5:
x = rearrange(
x,
"b c (f p) (h q) (w r) -> b (c p r q) f h w",
p=patch_size_t,
q=patch_size_hw,
r=patch_size_hw,
)
else:
raise ValueError(f"Invalid input shape: {x.shape}")
return x
def unpatchify(x, patch_size_hw, patch_size_t=1):
if patch_size_hw == 1 and patch_size_t == 1:
return x
if x.dim() == 4:
x = rearrange(
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw
)
elif x.dim() == 5:
x = rearrange(
x,
"b (c p r q) f h w -> b c (f p) (h q) (w r)",
p=patch_size_t,
q=patch_size_hw,
r=patch_size_hw,
)
return x
class processor(nn.Module):
def __init__(self):
super().__init__()
self.register_buffer("std-of-means", torch.empty(128))
self.register_buffer("mean-of-means", torch.empty(128))
self.register_buffer("mean-of-stds", torch.empty(128))
self.register_buffer("mean-of-stds_over_std-of-means", torch.empty(128))
self.register_buffer("channel", torch.empty(128))
def un_normalize(self, x):
return (x * self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)) + self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)
def normalize(self, x):
return (x - self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)) / self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)
class VideoVAE(nn.Module):
def __init__(self):
super().__init__()
config = {
"_class_name": "CausalVideoAutoencoder",
"dims": 3,
"in_channels": 3,
"out_channels": 3,
"latent_channels": 128,
"blocks": [
["res_x", 4],
["compress_all", 1],
["res_x_y", 1],
["res_x", 3],
["compress_all", 1],
["res_x_y", 1],
["res_x", 3],
["compress_all", 1],
["res_x", 3],
["res_x", 4],
],
"scaling_factor": 1.0,
"norm_layer": "pixel_norm",
"patch_size": 4,
"latent_log_var": "uniform",
"use_quant_conv": False,
"causal_decoder": False,
}
double_z = config.get("double_z", True)
latent_log_var = config.get(
"latent_log_var", "per_channel" if double_z else "none"
)
self.encoder = Encoder(
dims=config["dims"],
in_channels=config.get("in_channels", 3),
out_channels=config["latent_channels"],
blocks=config.get("encoder_blocks", config.get("blocks")),
patch_size=config.get("patch_size", 1),
latent_log_var=latent_log_var,
norm_layer=config.get("norm_layer", "group_norm"),
)
self.decoder = Decoder(
dims=config["dims"],
in_channels=config["latent_channels"],
out_channels=config.get("out_channels", 3),
blocks=config.get("decoder_blocks", config.get("blocks")),
patch_size=config.get("patch_size", 1),
norm_layer=config.get("norm_layer", "group_norm"),
causal=config.get("causal_decoder", False),
)
self.per_channel_statistics = processor()
def encode(self, x):
means, logvar = torch.chunk(self.encoder(x), 2, dim=1)
return self.per_channel_statistics.normalize(means)
def decode(self, x):
return self.decoder(self.per_channel_statistics.un_normalize(x))

View File

@@ -0,0 +1,83 @@
from typing import Tuple, Union
import torch
from .dual_conv3d import DualConv3d
from .causal_conv3d import CausalConv3d
import comfy.ops
ops = comfy.ops.disable_weight_init
def make_conv_nd(
dims: Union[int, Tuple[int, int]],
in_channels: int,
out_channels: int,
kernel_size: int,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
causal=False,
):
if dims == 2:
return ops.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
)
elif dims == 3:
if causal:
return CausalConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
)
return ops.Conv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
)
elif dims == (2, 1):
return DualConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=bias,
)
else:
raise ValueError(f"unsupported dimensions: {dims}")
def make_linear_nd(
dims: int,
in_channels: int,
out_channels: int,
bias=True,
):
if dims == 2:
return ops.Conv2d(
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
)
elif dims == 3 or dims == (2, 1):
return ops.Conv3d(
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
)
else:
raise ValueError(f"unsupported dimensions: {dims}")

View File

@@ -0,0 +1,195 @@
import math
from typing import Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
class DualConv3d(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride: Union[int, Tuple[int, int, int]] = 1,
padding: Union[int, Tuple[int, int, int]] = 0,
dilation: Union[int, Tuple[int, int, int]] = 1,
groups=1,
bias=True,
):
super(DualConv3d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
# Ensure kernel_size, stride, padding, and dilation are tuples of length 3
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size, kernel_size)
if kernel_size == (1, 1, 1):
raise ValueError(
"kernel_size must be greater than 1. Use make_linear_nd instead."
)
if isinstance(stride, int):
stride = (stride, stride, stride)
if isinstance(padding, int):
padding = (padding, padding, padding)
if isinstance(dilation, int):
dilation = (dilation, dilation, dilation)
# Set parameters for convolutions
self.groups = groups
self.bias = bias
# Define the size of the channels after the first convolution
intermediate_channels = (
out_channels if in_channels < out_channels else in_channels
)
# Define parameters for the first convolution
self.weight1 = nn.Parameter(
torch.Tensor(
intermediate_channels,
in_channels // groups,
1,
kernel_size[1],
kernel_size[2],
)
)
self.stride1 = (1, stride[1], stride[2])
self.padding1 = (0, padding[1], padding[2])
self.dilation1 = (1, dilation[1], dilation[2])
if bias:
self.bias1 = nn.Parameter(torch.Tensor(intermediate_channels))
else:
self.register_parameter("bias1", None)
# Define parameters for the second convolution
self.weight2 = nn.Parameter(
torch.Tensor(
out_channels, intermediate_channels // groups, kernel_size[0], 1, 1
)
)
self.stride2 = (stride[0], 1, 1)
self.padding2 = (padding[0], 0, 0)
self.dilation2 = (dilation[0], 1, 1)
if bias:
self.bias2 = nn.Parameter(torch.Tensor(out_channels))
else:
self.register_parameter("bias2", None)
# Initialize weights and biases
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight1, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.weight2, a=math.sqrt(5))
if self.bias:
fan_in1, _ = nn.init._calculate_fan_in_and_fan_out(self.weight1)
bound1 = 1 / math.sqrt(fan_in1)
nn.init.uniform_(self.bias1, -bound1, bound1)
fan_in2, _ = nn.init._calculate_fan_in_and_fan_out(self.weight2)
bound2 = 1 / math.sqrt(fan_in2)
nn.init.uniform_(self.bias2, -bound2, bound2)
def forward(self, x, use_conv3d=False, skip_time_conv=False):
if use_conv3d:
return self.forward_with_3d(x=x, skip_time_conv=skip_time_conv)
else:
return self.forward_with_2d(x=x, skip_time_conv=skip_time_conv)
def forward_with_3d(self, x, skip_time_conv):
# First convolution
x = F.conv3d(
x,
self.weight1,
self.bias1,
self.stride1,
self.padding1,
self.dilation1,
self.groups,
)
if skip_time_conv:
return x
# Second convolution
x = F.conv3d(
x,
self.weight2,
self.bias2,
self.stride2,
self.padding2,
self.dilation2,
self.groups,
)
return x
def forward_with_2d(self, x, skip_time_conv):
b, c, d, h, w = x.shape
# First 2D convolution
x = rearrange(x, "b c d h w -> (b d) c h w")
# Squeeze the depth dimension out of weight1 since it's 1
weight1 = self.weight1.squeeze(2)
# Select stride, padding, and dilation for the 2D convolution
stride1 = (self.stride1[1], self.stride1[2])
padding1 = (self.padding1[1], self.padding1[2])
dilation1 = (self.dilation1[1], self.dilation1[2])
x = F.conv2d(x, weight1, self.bias1, stride1, padding1, dilation1, self.groups)
_, _, h, w = x.shape
if skip_time_conv:
x = rearrange(x, "(b d) c h w -> b c d h w", b=b)
return x
# Second convolution which is essentially treated as a 1D convolution across the 'd' dimension
x = rearrange(x, "(b d) c h w -> (b h w) c d", b=b)
# Reshape weight2 to match the expected dimensions for conv1d
weight2 = self.weight2.squeeze(-1).squeeze(-1)
# Use only the relevant dimension for stride, padding, and dilation for the 1D convolution
stride2 = self.stride2[0]
padding2 = self.padding2[0]
dilation2 = self.dilation2[0]
x = F.conv1d(x, weight2, self.bias2, stride2, padding2, dilation2, self.groups)
x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w)
return x
@property
def weight(self):
return self.weight2
def test_dual_conv3d_consistency():
# Initialize parameters
in_channels = 3
out_channels = 5
kernel_size = (3, 3, 3)
stride = (2, 2, 2)
padding = (1, 1, 1)
# Create an instance of the DualConv3d class
dual_conv3d = DualConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=True,
)
# Example input tensor
test_input = torch.randn(1, 3, 10, 10, 10)
# Perform forward passes with both 3D and 2D settings
output_conv3d = dual_conv3d(test_input, use_conv3d=True)
output_2d = dual_conv3d(test_input, use_conv3d=False)
# Assert that the outputs from both methods are sufficiently close
assert torch.allclose(
output_conv3d, output_2d, atol=1e-6
), "Outputs are not consistent between 3D and 2D convolutions."

View File

@@ -0,0 +1,12 @@
import torch
from torch import nn
class PixelNorm(nn.Module):
def __init__(self, dim=1, eps=1e-8):
super(PixelNorm, self).__init__()
self.dim = dim
self.eps = eps
def forward(self, x):
return x / torch.sqrt(torch.mean(x**2, dim=self.dim, keepdim=True) + self.eps)

View File

@@ -299,7 +299,10 @@ def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
if len(mask.shape) == 2:
s1 += mask[i:end]
else:
s1 += mask[:, i:end]
if mask.shape[1] == 1:
s1 += mask
else:
s1 += mask[:, i:end]
s2 = s1.softmax(dim=-1).to(v.dtype)
del s1

View File

@@ -234,6 +234,8 @@ def efficient_dot_product_attention(
def get_mask_chunk(chunk_idx: int) -> Tensor:
if mask is None:
return None
if mask.shape[1] == 1:
return mask
chunk = min(query_chunk_size, q_tokens)
return mask[:,chunk_idx:chunk_idx + chunk]

View File

@@ -62,6 +62,7 @@ def load_lora(lora, to_load):
diffusers_lora = "{}_lora.up.weight".format(x)
diffusers2_lora = "{}.lora_B.weight".format(x)
diffusers3_lora = "{}.lora.up.weight".format(x)
mochi_lora = "{}.lora_B".format(x)
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
A_name = None
@@ -81,6 +82,10 @@ def load_lora(lora, to_load):
A_name = diffusers3_lora
B_name = "{}.lora.down.weight".format(x)
mid_name = None
elif mochi_lora in lora.keys():
A_name = mochi_lora
B_name = "{}.lora_A".format(x)
mid_name = None
elif transformers_lora in lora.keys():
A_name = transformers_lora
B_name ="{}.lora_linear_layer.down.weight".format(x)
@@ -362,6 +367,12 @@ def model_lora_keys_unet(model, key_map={}):
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer
if isinstance(model, comfy.model_base.GenmoMochi):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"): #Official Mochi lora format
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["{}".format(key_lora)] = k
return key_map

View File

@@ -30,6 +30,7 @@ import comfy.ldm.hydit.models
import comfy.ldm.audio.dit
import comfy.ldm.audio.embedders
import comfy.ldm.flux.model
import comfy.ldm.lightricks.model
import comfy.model_management
import comfy.conds
@@ -711,7 +712,13 @@ class Flux(BaseModel):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux)
def concat_cond(self, **kwargs):
num_channels = self.diffusion_model.img_in.weight.shape[1] // (self.diffusion_model.patch_size * self.diffusion_model.patch_size)
try:
#Handle Flux control loras dynamically changing the img_in weight.
num_channels = self.diffusion_model.img_in.weight.shape[1] // (self.diffusion_model.patch_size * self.diffusion_model.patch_size)
except:
#Some cases like tensorrt might not have the weights accessible
num_channels = self.model_config.unet_config["in_channels"]
out_channels = self.model_config.unet_config["out_channels"]
if num_channels <= out_channels:
@@ -767,3 +774,23 @@ class GenmoMochi(BaseModel):
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out
class LTXV(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.model.LTXVModel) #TODO
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
guiding_latent = kwargs.get("guiding_latent", None)
if guiding_latent is not None:
out['guiding_latent'] = comfy.conds.CONDRegular(guiding_latent)
out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25))
return out

View File

@@ -183,6 +183,10 @@ def detect_unet_config(state_dict, key_prefix):
dit_config["rope_theta"] = 10000.0
return dit_config
if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv
dit_config = {}
dit_config["image_model"] = "ltxv"
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None

View File

@@ -628,6 +628,10 @@ def maximum_vram_for_weights(device=None):
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
if model_params < 0:
model_params = 1000000000000000000000
if args.fp32_unet:
return torch.float32
if args.fp64_unet:
return torch.float64
if args.bf16_unet:
return torch.bfloat16
if args.fp16_unet:
@@ -674,7 +678,7 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
# None means no manual cast
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
if weight_dtype == torch.float32:
if weight_dtype == torch.float32 or weight_dtype == torch.float64:
return None
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)

View File

@@ -367,17 +367,26 @@ class ModelPatcher:
else:
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
def _load_list(self):
loading = []
for n, m in self.model.named_modules():
params = []
skip = False
for name, param in m.named_parameters(recurse=False):
params.append(name)
for name, param in m.named_parameters(recurse=True):
if name not in params:
skip = True # skip random weights in non leaf modules
break
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
loading.append((comfy.model_management.module_size(m), n, m, params))
return loading
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
mem_counter = 0
patch_counter = 0
lowvram_counter = 0
loading = []
for n, m in self.model.named_modules():
params = []
for name, param in m.named_parameters(recurse=False):
params.append(name)
if hasattr(m, "comfy_cast_weights") or len(params) > 0:
loading.append((comfy.model_management.module_size(m), n, m, params))
loading = self._load_list()
load_completely = []
loading.sort(reverse=True)
@@ -420,8 +429,9 @@ class ModelPatcher:
if m.comfy_cast_weights:
wipe_lowvram_weight(m)
mem_counter += module_mem
load_completely.append((module_mem, n, m, params))
if full_load or mem_counter + module_mem < lowvram_model_memory:
mem_counter += module_mem
load_completely.append((module_mem, n, m, params))
load_completely.sort(reverse=True)
for x in load_completely:
@@ -508,14 +518,7 @@ class ModelPatcher:
def partially_unload(self, device_to, memory_to_free=0):
memory_freed = 0
patch_counter = 0
unload_list = []
for n, m in self.model.named_modules():
shift_lowvram = False
if hasattr(m, "comfy_cast_weights"):
module_mem = comfy.model_management.module_size(m)
unload_list.append((module_mem, n, m))
unload_list = self._load_list()
unload_list.sort()
for unload in unload_list:
if memory_to_free < memory_freed:
@@ -523,32 +526,42 @@ class ModelPatcher:
module_mem = unload[0]
n = unload[1]
m = unload[2]
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
params = unload[3]
lowvram_possible = hasattr(m, "comfy_cast_weights")
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
for key in [weight_key, bias_key]:
move_weight = True
for param in params:
key = "{}.{}".format(n, param)
bk = self.backup.get(key, None)
if bk is not None:
if not lowvram_possible:
move_weight = False
break
if bk.inplace_update:
comfy.utils.copy_to_param(self.model, key, bk.weight)
else:
comfy.utils.set_attr_param(self.model, key, bk.weight)
self.backup.pop(key)
m.to(device_to)
if weight_key in self.patches:
m.weight_function = LowVramPatch(weight_key, self.patches)
patch_counter += 1
if bias_key in self.patches:
m.bias_function = LowVramPatch(bias_key, self.patches)
patch_counter += 1
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if move_weight:
m.to(device_to)
if lowvram_possible:
if weight_key in self.patches:
m.weight_function = LowVramPatch(weight_key, self.patches)
patch_counter += 1
if bias_key in self.patches:
m.bias_function = LowVramPatch(bias_key, self.patches)
patch_counter += 1
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
m.comfy_patched_weights = False
memory_freed += module_mem
logging.debug("freed {}".format(n))
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
m.comfy_patched_weights = False
memory_freed += module_mem
logging.debug("freed {}".format(n))
self.model.model_lowvram = True
self.model.lowvram_patch_counter += patch_counter

View File

@@ -8,6 +8,7 @@ from .ldm.cascade.stage_a import StageA
from .ldm.cascade.stage_c_coder import StageC_coder
from .ldm.audio.autoencoder import AudioOobleckVAE
import comfy.ldm.genmo.vae.model
import comfy.ldm.lightricks.vae.causal_video_autoencoder
import yaml
import comfy.utils
@@ -27,6 +28,7 @@ import comfy.text_encoders.hydit
import comfy.text_encoders.flux
import comfy.text_encoders.long_clipl
import comfy.text_encoders.genmo
import comfy.text_encoders.lt
import comfy.model_patcher
import comfy.lora
@@ -261,6 +263,14 @@ class VAE:
self.memory_used_encode = lambda shape, dtype: (1.5 * max(shape[2], 7) * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
self.upscale_ratio = (lambda a: max(0, a * 6 - 5), 8, 8)
self.working_dtypes = [torch.float16, torch.float32]
elif "decoder.up_blocks.0.res_blocks.0.conv1.conv.weight" in sd: #lightricks ltxv
self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE()
self.latent_channels = 128
self.latent_dim = 3
self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (70 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 32, 32)
self.working_dtypes = [torch.bfloat16, torch.float32]
else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
@@ -360,7 +370,9 @@ class VAE:
elif dims == 2:
pixel_samples = self.decode_tiled_(samples_in)
elif dims == 3:
pixel_samples = self.decode_tiled_3d(samples_in)
tile = 256 // self.spacial_compression_decode()
overlap = tile // 4
pixel_samples = self.decode_tiled_3d(samples_in, tile_x=tile, tile_y=tile, overlap=(1, overlap, overlap))
pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
return pixel_samples
@@ -424,6 +436,12 @@ class VAE:
def get_sd(self):
return self.first_stage_model.state_dict()
def spacial_compression_decode(self):
try:
return self.upscale_ratio[-1]
except:
return self.upscale_ratio
class StyleModel:
def __init__(self, model, device="cpu"):
self.model = model
@@ -452,6 +470,7 @@ class CLIPType(Enum):
HUNYUAN_DIT = 5
FLUX = 6
MOCHI = 7
LTXV = 8
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
clip_data = []
@@ -530,6 +549,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
if clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, **t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.LTXV:
clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer
else: #CLIPType.MOCHI
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer

View File

@@ -11,6 +11,7 @@ import comfy.text_encoders.aura_t5
import comfy.text_encoders.hydit
import comfy.text_encoders.flux
import comfy.text_encoders.genmo
import comfy.text_encoders.lt
from . import supported_models_base
from . import latent_formats
@@ -658,6 +659,15 @@ class Flux(supported_models_base.BASE):
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect))
class FluxInpaint(Flux):
unet_config = {
"image_model": "flux",
"guidance_embed": True,
"in_channels": 96,
}
supported_inference_dtypes = [torch.bfloat16, torch.float32]
class FluxSchnell(Flux):
unet_config = {
"image_model": "flux",
@@ -702,7 +712,34 @@ class GenmoMochi(supported_models_base.BASE):
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.genmo.MochiT5Tokenizer, comfy.text_encoders.genmo.mochi_te(**t5_detect))
class LTXV(supported_models_base.BASE):
unet_config = {
"image_model": "ltxv",
}
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, Flux, FluxSchnell, GenmoMochi]
sampling_settings = {
"shift": 2.37,
}
unet_extra_config = {}
latent_format = latent_formats.LTXV
memory_usage_factor = 2.7
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.LTXV(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.lt.LTXVT5Tokenizer, comfy.text_encoders.lt.ltxv_te(**t5_detect))
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV]
models += [SVD_img2vid]

18
comfy/text_encoders/lt.py Normal file
View File

@@ -0,0 +1,18 @@
from comfy import sd1_clip
import os
from transformers import T5TokenizerFast
import comfy.text_encoders.genmo
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128) #pad to 128?
class LTXVT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
def ltxv_te(*args, **kwargs):
return comfy.text_encoders.genmo.mochi_te(*args, **kwargs)

181
comfy_extras/nodes_lt.py Normal file
View File

@@ -0,0 +1,181 @@
import nodes
import node_helpers
import torch
import comfy.model_management
import comfy.model_sampling
import math
class EmptyLTXVLatentVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
"length": ("INT", {"default": 97, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/video/ltxv"
def generate(self, width, height, length, batch_size=1):
latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device())
return ({"samples": latent}, )
class LTXVImgToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE",),
"image": ("IMAGE",),
"width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
"length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
CATEGORY = "conditioning/video_models"
FUNCTION = "generate"
def generate(self, positive, negative, image, vae, width, height, length, batch_size):
pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
encode_pixels = pixels[:, :, :, :3]
t = vae.encode(encode_pixels)
positive = node_helpers.conditioning_set_values(positive, {"guiding_latent": t})
negative = node_helpers.conditioning_set_values(negative, {"guiding_latent": t})
latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device())
latent[:, :, :t.shape[2]] = t
return (positive, negative, {"samples": latent}, )
class LTXVConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"frame_rate": ("FLOAT", {"default": 25.0, "min": 0.0, "max": 1000.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
RETURN_NAMES = ("positive", "negative")
FUNCTION = "append"
CATEGORY = "conditioning/video_models"
def append(self, positive, negative, frame_rate):
positive = node_helpers.conditioning_set_values(positive, {"frame_rate": frame_rate})
negative = node_helpers.conditioning_set_values(negative, {"frame_rate": frame_rate})
return (positive, negative)
class ModelSamplingLTXV:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}),
"base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}),
},
"optional": {"latent": ("LATENT",), }
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, max_shift, base_shift, latent=None):
m = model.clone()
if latent is None:
tokens = 4096
else:
tokens = math.prod(latent["samples"].shape[2:])
x1 = 1024
x2 = 4096
mm = (max_shift - base_shift) / (x2 - x1)
b = base_shift - mm * x1
shift = (tokens) * mm + b
sampling_base = comfy.model_sampling.ModelSamplingFlux
sampling_type = comfy.model_sampling.CONST
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_parameters(shift=shift)
m.add_object_patch("model_sampling", model_sampling)
return (m, )
class LTXVScheduler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}),
"base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}),
"stretch": ("BOOLEAN", {
"default": True,
"tooltip": "Stretch the sigmas to be in the range [terminal, 1]."
}),
"terminal": (
"FLOAT",
{
"default": 0.1, "min": 0.0, "max": 0.99, "step": 0.01,
"tooltip": "The terminal value of the sigmas after stretching."
},
),
},
"optional": {"latent": ("LATENT",), }
}
RETURN_TYPES = ("SIGMAS",)
CATEGORY = "sampling/custom_sampling/schedulers"
FUNCTION = "get_sigmas"
def get_sigmas(self, steps, max_shift, base_shift, stretch, terminal, latent=None):
if latent is None:
tokens = 4096
else:
tokens = math.prod(latent["samples"].shape[2:])
sigmas = torch.linspace(1.0, 0.0, steps + 1)
x1 = 1024
x2 = 4096
mm = (max_shift - base_shift) / (x2 - x1)
b = base_shift - mm * x1
sigma_shift = (tokens) * mm + b
power = 1
sigmas = torch.where(
sigmas != 0,
math.exp(sigma_shift) / (math.exp(sigma_shift) + (1 / sigmas - 1) ** power),
0,
)
# Stretch sigmas so that its final value matches the given terminal value.
if stretch:
non_zero_mask = sigmas != 0
non_zero_sigmas = sigmas[non_zero_mask]
one_minus_z = 1.0 - non_zero_sigmas
scale_factor = one_minus_z[-1] / (1.0 - terminal)
stretched = 1.0 - (one_minus_z / scale_factor)
sigmas[non_zero_mask] = stretched
return (sigmas,)
NODE_CLASS_MAPPINGS = {
"EmptyLTXVLatentVideo": EmptyLTXVLatentVideo,
"LTXVImgToVideo": LTXVImgToVideo,
"ModelSamplingLTXV": ModelSamplingLTXV,
"LTXVConditioning": LTXVConditioning,
"LTXVScheduler": LTXVScheduler,
}

View File

@@ -174,6 +174,28 @@ class ModelMergeMochiPreview(comfy_extras.nodes_model_merging.ModelMergeBlocks):
return {"required": arg_dict}
class ModelMergeLTXV(comfy_extras.nodes_model_merging.ModelMergeBlocks):
CATEGORY = "advanced/model_merging/model_specific"
@classmethod
def INPUT_TYPES(s):
arg_dict = { "model1": ("MODEL",),
"model2": ("MODEL",)}
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
arg_dict["patchify_proj."] = argument
arg_dict["adaln_single."] = argument
arg_dict["caption_projection."] = argument
for i in range(28):
arg_dict["transformer_blocks.{}.".format(i)] = argument
arg_dict["scale_shift_table"] = argument
arg_dict["proj_out."] = argument
return {"required": arg_dict}
NODE_CLASS_MAPPINGS = {
"ModelMergeSD1": ModelMergeSD1,
"ModelMergeSD2": ModelMergeSD1, #SD1 and SD2 have the same blocks
@@ -183,4 +205,5 @@ NODE_CLASS_MAPPINGS = {
"ModelMergeFlux1": ModelMergeFlux1,
"ModelMergeSD35_Large": ModelMergeSD35_Large,
"ModelMergeMochiPreview": ModelMergeMochiPreview,
"ModelMergeLTXV": ModelMergeLTXV,
}

View File

@@ -1,2 +0,0 @@
# model_manager/__init__.py
from .download_models import download_model, DownloadModelStatus, DownloadStatusType, create_model_path, check_file_exists, track_download_progress, validate_filename

View File

@@ -1,234 +0,0 @@
#NOTE: This was an experiment and WILL BE REMOVED
from __future__ import annotations
import aiohttp
import os
import traceback
import logging
from folder_paths import folder_names_and_paths, get_folder_paths
import re
from typing import Callable, Any, Optional, Awaitable, Dict
from enum import Enum
import time
from dataclasses import dataclass
class DownloadStatusType(Enum):
PENDING = "pending"
IN_PROGRESS = "in_progress"
COMPLETED = "completed"
ERROR = "error"
@dataclass
class DownloadModelStatus():
status: str
progress_percentage: float
message: str
already_existed: bool = False
def __init__(self, status: DownloadStatusType, progress_percentage: float, message: str, already_existed: bool):
self.status = status.value # Store the string value of the Enum
self.progress_percentage = progress_percentage
self.message = message
self.already_existed = already_existed
def to_dict(self) -> Dict[str, Any]:
return {
"status": self.status,
"progress_percentage": self.progress_percentage,
"message": self.message,
"already_existed": self.already_existed
}
async def download_model(model_download_request: Callable[[str], Awaitable[aiohttp.ClientResponse]],
model_name: str,
model_url: str,
model_directory: str,
folder_path: str,
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]],
progress_interval: float = 1.0) -> DownloadModelStatus:
"""
Download a model file from a given URL into the models directory.
Args:
model_download_request (Callable[[str], Awaitable[aiohttp.ClientResponse]]):
A function that makes an HTTP request. This makes it easier to mock in unit tests.
model_name (str):
The name of the model file to be downloaded. This will be the filename on disk.
model_url (str):
The URL from which to download the model.
model_directory (str):
The subdirectory within the main models directory where the model
should be saved (e.g., 'checkpoints', 'loras', etc.).
progress_callback (Callable[[str, DownloadModelStatus], Awaitable[Any]]):
An asynchronous function to call with progress updates.
folder_path (str);
Path to which model folder should be used as the root.
Returns:
DownloadModelStatus: The result of the download operation.
"""
if not validate_filename(model_name):
return DownloadModelStatus(
DownloadStatusType.ERROR,
0,
"Invalid model name",
False
)
if not model_directory in folder_names_and_paths:
return DownloadModelStatus(
DownloadStatusType.ERROR,
0,
"Invalid or unrecognized model directory. model_directory must be a known model type (eg 'checkpoints'). If you are seeing this error for a custom model type, ensure the relevant custom nodes are installed and working.",
False
)
if not folder_path in get_folder_paths(model_directory):
return DownloadModelStatus(
DownloadStatusType.ERROR,
0,
f"Invalid folder path '{folder_path}', does not match the list of known directories ({get_folder_paths(model_directory)}). If you're seeing this in the downloader UI, you may need to refresh the page.",
False
)
file_path = create_model_path(model_name, folder_path)
existing_file = await check_file_exists(file_path, model_name, progress_callback)
if existing_file:
return existing_file
try:
logging.info(f"Downloading {model_name} from {model_url}")
status = DownloadModelStatus(DownloadStatusType.PENDING, 0, f"Starting download of {model_name}", False)
await progress_callback(model_name, status)
response = await model_download_request(model_url)
if response.status != 200:
error_message = f"Failed to download {model_name}. Status code: {response.status}"
logging.error(error_message)
status = DownloadModelStatus(DownloadStatusType.ERROR, 0, error_message, False)
await progress_callback(model_name, status)
return DownloadModelStatus(DownloadStatusType.ERROR, 0, error_message, False)
return await track_download_progress(response, file_path, model_name, progress_callback, progress_interval)
except Exception as e:
logging.error(f"Error in downloading model: {e}")
return await handle_download_error(e, model_name, progress_callback)
def create_model_path(model_name: str, folder_path: str) -> tuple[str, str]:
os.makedirs(folder_path, exist_ok=True)
file_path = os.path.join(folder_path, model_name)
# Ensure the resulting path is still within the base directory
abs_file_path = os.path.abspath(file_path)
abs_base_dir = os.path.abspath(folder_path)
if os.path.commonprefix([abs_file_path, abs_base_dir]) != abs_base_dir:
raise Exception(f"Invalid model directory: {folder_path}/{model_name}")
return file_path
async def check_file_exists(file_path: str,
model_name: str,
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]]
) -> Optional[DownloadModelStatus]:
if os.path.exists(file_path):
status = DownloadModelStatus(DownloadStatusType.COMPLETED, 100, f"{model_name} already exists", True)
await progress_callback(model_name, status)
return status
return None
async def track_download_progress(response: aiohttp.ClientResponse,
file_path: str,
model_name: str,
progress_callback: Callable[[str, DownloadModelStatus], Awaitable[Any]],
interval: float = 1.0) -> DownloadModelStatus:
try:
total_size = int(response.headers.get('Content-Length', 0))
downloaded = 0
last_update_time = time.time()
async def update_progress():
nonlocal last_update_time
progress = (downloaded / total_size) * 100 if total_size > 0 else 0
status = DownloadModelStatus(DownloadStatusType.IN_PROGRESS, progress, f"Downloading {model_name}", False)
await progress_callback(model_name, status)
last_update_time = time.time()
temp_file_path = file_path + '.tmp'
with open(temp_file_path, 'wb') as f:
chunk_iterator = response.content.iter_chunked(8192)
while True:
try:
chunk = await chunk_iterator.__anext__()
except StopAsyncIteration:
break
f.write(chunk)
downloaded += len(chunk)
if time.time() - last_update_time >= interval:
await update_progress()
os.rename(temp_file_path, file_path)
await update_progress()
logging.info(f"Successfully downloaded {model_name}. Total downloaded: {downloaded}")
status = DownloadModelStatus(DownloadStatusType.COMPLETED, 100, f"Successfully downloaded {model_name}", False)
await progress_callback(model_name, status)
return status
except Exception as e:
logging.error(f"Error in track_download_progress: {e}")
logging.error(traceback.format_exc())
return await handle_download_error(e, model_name, progress_callback)
async def handle_download_error(e: Exception,
model_name: str,
progress_callback: Callable[[str, DownloadModelStatus], Any]
) -> DownloadModelStatus:
error_message = f"Error downloading {model_name}: {str(e)}"
status = DownloadModelStatus(DownloadStatusType.ERROR, 0, error_message, False)
await progress_callback(model_name, status)
return status
def validate_filename(filename: str)-> bool:
"""
Validate a filename to ensure it's safe and doesn't contain any path traversal attempts.
Args:
filename (str): The filename to validate
Returns:
bool: True if the filename is valid, False otherwise
"""
if not filename.lower().endswith(('.sft', '.safetensors')):
return False
# Check if the filename is empty, None, or just whitespace
if not filename or not filename.strip():
return False
# Check for any directory traversal attempts or invalid characters
if any(char in filename for char in ['..', '/', '\\', '\n', '\r', '\t', '\0']):
return False
# Check if the filename starts with a dot (hidden file)
if filename.startswith('.'):
return False
# Use a whitelist of allowed characters
if not re.match(r'^[a-zA-Z0-9_\-. ]+$', filename):
return False
# Ensure the filename isn't too long
if len(filename) > 255:
return False
return True

View File

@@ -301,7 +301,8 @@ class VAEDecodeTiled:
def decode(self, vae, samples, tile_size, overlap=64):
if tile_size < overlap * 4:
overlap = tile_size // 4
images = vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, overlap=overlap // 8)
compression = vae.spacial_compression_decode()
images = vae.decode_tiled(samples["samples"], tile_x=tile_size // compression, tile_y=tile_size // compression, overlap=overlap // compression)
if len(images.shape) == 5: #Combine batches
images = images.reshape(-1, images.shape[-3], images.shape[-2], images.shape[-1])
return (images, )
@@ -391,7 +392,7 @@ class InpaintModelConditioning:
CATEGORY = "conditioning/inpaint"
def encode(self, positive, negative, pixels, vae, mask, noise_mask):
def encode(self, positive, negative, pixels, vae, mask, noise_mask=True):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
@@ -897,7 +898,7 @@ class CLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi"], ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv"], ),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
@@ -915,6 +916,8 @@ class CLIPLoader:
clip_type = comfy.sd.CLIPType.STABLE_AUDIO
elif type == "mochi":
clip_type = comfy.sd.CLIPType.MOCHI
elif type == "ltxv":
clip_type = comfy.sd.CLIPType.LTXV
else:
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
@@ -968,15 +971,19 @@ class CLIPVisionEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_vision": ("CLIP_VISION",),
"image": ("IMAGE",)
"image": ("IMAGE",),
"crop": (["center", "none"],)
}}
RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
FUNCTION = "encode"
CATEGORY = "conditioning"
def encode(self, clip_vision, image):
output = clip_vision.encode_image(image)
def encode(self, clip_vision, image, crop):
crop_image = True
if crop != "center":
crop_image = False
output = clip_vision.encode_image(image, crop=crop_image)
return (output,)
class StyleModelLoader:
@@ -1001,14 +1008,19 @@ class StyleModelApply:
return {"required": {"conditioning": ("CONDITIONING", ),
"style_model": ("STYLE_MODEL", ),
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}),
"strength_type": (["multiply"], ),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_stylemodel"
CATEGORY = "conditioning/style_model"
def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
def apply_stylemodel(self, clip_vision_output, style_model, conditioning, strength, strength_type):
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
if strength_type == "multiply":
cond *= strength
c = []
for t in conditioning:
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
@@ -2136,6 +2148,7 @@ def init_builtin_extra_nodes():
"nodes_torch_compile.py",
"nodes_mochi.py",
"nodes_slg.py",
"nodes_lt.py",
]
import_failed = []

View File

@@ -29,7 +29,6 @@ import comfy.model_management
import node_helpers
from app.frontend_management import FrontendManager
from app.user_manager import UserManager
from model_filemanager import download_model, DownloadModelStatus
from typing import Optional
from api_server.routes.internal.internal_routes import InternalRoutes
@@ -676,36 +675,6 @@ class PromptServer():
self.prompt_queue.delete_history_item(id_to_delete)
return web.Response(status=200)
# Internal route. Should not be depended upon and is subject to change at any time.
# TODO(robinhuang): Move to internal route table class once we refactor PromptServer to pass around Websocket.
# NOTE: This was an experiment and WILL BE REMOVED
@routes.post("/internal/models/download")
async def download_handler(request):
async def report_progress(filename: str, status: DownloadModelStatus):
payload = status.to_dict()
payload['download_path'] = filename
await self.send_json("download_progress", payload)
data = await request.json()
url = data.get('url')
model_directory = data.get('model_directory')
folder_path = data.get('folder_path')
model_filename = data.get('model_filename')
progress_interval = data.get('progress_interval', 1.0) # In seconds, how often to report download progress.
if not url or not model_directory or not model_filename or not folder_path:
return web.json_response({"status": "error", "message": "Missing URL or folder path or filename"}, status=400)
session = self.client_session
if session is None:
logging.error("Client session is not initialized")
return web.Response(status=500)
task = asyncio.create_task(download_model(lambda url: session.get(url), model_filename, url, model_directory, folder_path, report_progress, progress_interval))
await task
return web.json_response(task.result().to_dict())
async def setup(self):
timeout = aiohttp.ClientTimeout(total=None) # no timeout

View File

@@ -1,337 +0,0 @@
import pytest
import tempfile
import aiohttp
from aiohttp import ClientResponse
import itertools
import os
from unittest.mock import AsyncMock, patch, MagicMock
from model_filemanager import download_model, track_download_progress, create_model_path, check_file_exists, DownloadStatusType, DownloadModelStatus, validate_filename
import folder_paths
@pytest.fixture
def temp_dir():
with tempfile.TemporaryDirectory() as tmpdirname:
yield tmpdirname
class AsyncIteratorMock:
"""
A mock class that simulates an asynchronous iterator.
This is used to mimic the behavior of aiohttp's content iterator.
"""
def __init__(self, seq):
# Convert the input sequence into an iterator
self.iter = iter(seq)
def __aiter__(self):
# This method is called when 'async for' is used
return self
async def __anext__(self):
# This method is called for each iteration in an 'async for' loop
try:
return next(self.iter)
except StopIteration:
# This is the asynchronous equivalent of StopIteration
raise StopAsyncIteration
class ContentMock:
"""
A mock class that simulates the content attribute of an aiohttp ClientResponse.
This class provides the iter_chunked method which returns an async iterator of chunks.
"""
def __init__(self, chunks):
# Store the chunks that will be returned by the iterator
self.chunks = chunks
def iter_chunked(self, chunk_size):
# This method mimics aiohttp's content.iter_chunked()
# For simplicity in testing, we ignore chunk_size and just return our predefined chunks
return AsyncIteratorMock(self.chunks)
@pytest.mark.asyncio
async def test_download_model_success(temp_dir):
mock_response = AsyncMock(spec=aiohttp.ClientResponse)
mock_response.status = 200
mock_response.headers = {'Content-Length': '1000'}
# Create a mock for content that returns an async iterator directly
chunks = [b'a' * 500, b'b' * 300, b'c' * 200]
mock_response.content = ContentMock(chunks)
mock_make_request = AsyncMock(return_value=mock_response)
mock_progress_callback = AsyncMock()
time_values = itertools.count(0, 0.1)
fake_paths = {'checkpoints': ([temp_dir], folder_paths.supported_pt_extensions)}
with patch('model_filemanager.create_model_path', return_value=('models/checkpoints/model.sft', 'model.sft')), \
patch('model_filemanager.check_file_exists', return_value=None), \
patch('folder_paths.folder_names_and_paths', fake_paths), \
patch('time.time', side_effect=time_values): # Simulate time passing
result = await download_model(
mock_make_request,
'model.sft',
'http://example.com/model.sft',
'checkpoints',
temp_dir,
mock_progress_callback
)
# Assert the result
assert isinstance(result, DownloadModelStatus)
assert result.message == 'Successfully downloaded model.sft'
assert result.status == 'completed'
assert result.already_existed is False
# Check progress callback calls
assert mock_progress_callback.call_count >= 3 # At least start, one progress update, and completion
# Check initial call
mock_progress_callback.assert_any_call(
'model.sft',
DownloadModelStatus(DownloadStatusType.PENDING, 0, "Starting download of model.sft", False)
)
# Check final call
mock_progress_callback.assert_any_call(
'model.sft',
DownloadModelStatus(DownloadStatusType.COMPLETED, 100, "Successfully downloaded model.sft", False)
)
mock_file_path = os.path.join(temp_dir, 'model.sft')
assert os.path.exists(mock_file_path)
with open(mock_file_path, 'rb') as mock_file:
assert mock_file.read() == b''.join(chunks)
os.remove(mock_file_path)
# Verify request was made
mock_make_request.assert_called_once_with('http://example.com/model.sft')
@pytest.mark.asyncio
async def test_download_model_url_request_failure(temp_dir):
# Mock dependencies
mock_response = AsyncMock(spec=ClientResponse)
mock_response.status = 404 # Simulate a "Not Found" error
mock_get = AsyncMock(return_value=mock_response)
mock_progress_callback = AsyncMock()
fake_paths = {'checkpoints': ([temp_dir], folder_paths.supported_pt_extensions)}
# Mock the create_model_path function
with patch('model_filemanager.create_model_path', return_value='/mock/path/model.safetensors'), \
patch('model_filemanager.check_file_exists', return_value=None), \
patch('folder_paths.folder_names_and_paths', fake_paths):
# Call the function
result = await download_model(
mock_get,
'model.safetensors',
'http://example.com/model.safetensors',
'checkpoints',
temp_dir,
mock_progress_callback
)
# Assert the expected behavior
assert isinstance(result, DownloadModelStatus)
assert result.status == 'error'
assert result.message == 'Failed to download model.safetensors. Status code: 404'
assert result.already_existed is False
# Check that progress_callback was called with the correct arguments
mock_progress_callback.assert_any_call(
'model.safetensors',
DownloadModelStatus(
status=DownloadStatusType.PENDING,
progress_percentage=0,
message='Starting download of model.safetensors',
already_existed=False
)
)
mock_progress_callback.assert_called_with(
'model.safetensors',
DownloadModelStatus(
status=DownloadStatusType.ERROR,
progress_percentage=0,
message='Failed to download model.safetensors. Status code: 404',
already_existed=False
)
)
# Verify that the get method was called with the correct URL
mock_get.assert_called_once_with('http://example.com/model.safetensors')
@pytest.mark.asyncio
async def test_download_model_invalid_model_subdirectory():
mock_make_request = AsyncMock()
mock_progress_callback = AsyncMock()
result = await download_model(
mock_make_request,
'model.sft',
'http://example.com/model.sft',
'../bad_path',
'../bad_path',
mock_progress_callback
)
# Assert the result
assert isinstance(result, DownloadModelStatus)
assert result.message.startswith('Invalid or unrecognized model directory')
assert result.status == 'error'
assert result.already_existed is False
@pytest.mark.asyncio
async def test_download_model_invalid_folder_path():
mock_make_request = AsyncMock()
mock_progress_callback = AsyncMock()
result = await download_model(
mock_make_request,
'model.sft',
'http://example.com/model.sft',
'checkpoints',
'invalid_path',
mock_progress_callback
)
# Assert the result
assert isinstance(result, DownloadModelStatus)
assert result.message.startswith("Invalid folder path")
assert result.status == 'error'
assert result.already_existed is False
def test_create_model_path(tmp_path, monkeypatch):
model_name = "model.safetensors"
folder_path = os.path.join(tmp_path, "mock_dir")
file_path = create_model_path(model_name, folder_path)
assert file_path == os.path.join(folder_path, "model.safetensors")
assert os.path.exists(os.path.dirname(file_path))
with pytest.raises(Exception, match="Invalid model directory"):
create_model_path("../path_traversal.safetensors", folder_path)
with pytest.raises(Exception, match="Invalid model directory"):
create_model_path("/etc/some_root_path", folder_path)
@pytest.mark.asyncio
async def test_check_file_exists_when_file_exists(tmp_path):
file_path = tmp_path / "existing_model.sft"
file_path.touch() # Create an empty file
mock_callback = AsyncMock()
result = await check_file_exists(str(file_path), "existing_model.sft", mock_callback)
assert result is not None
assert result.status == "completed"
assert result.message == "existing_model.sft already exists"
assert result.already_existed is True
mock_callback.assert_called_once_with(
"existing_model.sft",
DownloadModelStatus(DownloadStatusType.COMPLETED, 100, "existing_model.sft already exists", already_existed=True)
)
@pytest.mark.asyncio
async def test_check_file_exists_when_file_does_not_exist(tmp_path):
file_path = tmp_path / "non_existing_model.sft"
mock_callback = AsyncMock()
result = await check_file_exists(str(file_path), "non_existing_model.sft", mock_callback)
assert result is None
mock_callback.assert_not_called()
@pytest.mark.asyncio
async def test_track_download_progress_no_content_length(temp_dir):
mock_response = AsyncMock(spec=aiohttp.ClientResponse)
mock_response.headers = {} # No Content-Length header
chunks = [b'a' * 500, b'b' * 500]
mock_response.content.iter_chunked.return_value = AsyncIteratorMock(chunks)
mock_callback = AsyncMock()
full_path = os.path.join(temp_dir, 'model.sft')
result = await track_download_progress(
mock_response, full_path, 'model.sft',
mock_callback, interval=0.1
)
assert result.status == "completed"
assert os.path.exists(full_path)
with open(full_path, 'rb') as f:
assert f.read() == b''.join(chunks)
os.remove(full_path)
# Check that progress was reported even without knowing the total size
mock_callback.assert_any_call(
'model.sft',
DownloadModelStatus(DownloadStatusType.IN_PROGRESS, 0, "Downloading model.sft", already_existed=False)
)
@pytest.mark.asyncio
async def test_track_download_progress_interval(temp_dir):
mock_response = AsyncMock(spec=aiohttp.ClientResponse)
mock_response.headers = {'Content-Length': '1000'}
chunks = [b'a' * 100] * 10
mock_response.content.iter_chunked.return_value = AsyncIteratorMock(chunks)
mock_callback = AsyncMock()
mock_open = MagicMock(return_value=MagicMock())
# Create a mock time function that returns incremental float values
mock_time = MagicMock()
mock_time.side_effect = [i * 0.5 for i in range(30)] # This should be enough for 10 chunks
full_path = os.path.join(temp_dir, 'model.sft')
with patch('time.time', mock_time):
await track_download_progress(
mock_response, full_path, 'model.sft',
mock_callback, interval=1.0
)
assert os.path.exists(full_path)
with open(full_path, 'rb') as f:
assert f.read() == b''.join(chunks)
os.remove(full_path)
# Assert that progress was updated at least 3 times (start, at least one interval, and end)
assert mock_callback.call_count >= 3, f"Expected at least 3 calls, but got {mock_callback.call_count}"
# Verify the first and last calls
first_call = mock_callback.call_args_list[0]
assert first_call[0][1].status == "in_progress"
# Allow for some initial progress, but it should be less than 50%
assert 0 <= first_call[0][1].progress_percentage < 50, f"First call progress was {first_call[0][1].progress_percentage}%"
last_call = mock_callback.call_args_list[-1]
assert last_call[0][1].status == "completed"
assert last_call[0][1].progress_percentage == 100
@pytest.mark.parametrize("filename, expected", [
("valid_model.safetensors", True),
("valid_model.sft", True),
("valid model.safetensors", True), # Test with space
("UPPERCASE_MODEL.SAFETENSORS", True),
("model_with.multiple.dots.pt", False),
("", False), # Empty string
("../../../etc/passwd", False), # Path traversal attempt
("/etc/passwd", False), # Absolute path
("\\windows\\system32\\config\\sam", False), # Windows path
(".hidden_file.pt", False), # Hidden file
("invalid<char>.ckpt", False), # Invalid character
("invalid?.ckpt", False), # Another invalid character
("very" * 100 + ".safetensors", False), # Too long filename
("\nmodel_with_newline.pt", False), # Newline character
("model_with_emoji😊.pt", False), # Emoji in filename
])
def test_validate_filename(filename, expected):
assert validate_filename(filename) == expected

103
web/assets/ExtensionPanel-CfMfcLgI.js generated vendored
View File

@@ -1,103 +0,0 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, c6 as useExtensionStore, u as useSettingStore, r as ref, o as onMounted, q as computed, g as openBlock, h as createElementBlock, i as createVNode, y as withCtx, z as unref, bT as script$1, A as createBaseVNode, x as createBlock, N as Fragment, O as renderList, a6 as toDisplayString, aw as createTextVNode, bR as script$3, j as createCommentVNode, D as script$4 } from "./index-B6dYHNhg.js";
import { s as script, a as script$2 } from "./index-CjwCGacA.js";
import "./index-MX9DEi8Q.js";
const _hoisted_1 = { class: "extension-panel" };
const _hoisted_2 = { class: "mt-4" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "ExtensionPanel",
setup(__props) {
const extensionStore = useExtensionStore();
const settingStore = useSettingStore();
const editingEnabledExtensions = ref({});
onMounted(() => {
extensionStore.extensions.forEach((ext) => {
editingEnabledExtensions.value[ext.name] = extensionStore.isExtensionEnabled(ext.name);
});
});
const changedExtensions = computed(() => {
return extensionStore.extensions.filter(
(ext) => editingEnabledExtensions.value[ext.name] !== extensionStore.isExtensionEnabled(ext.name)
);
});
const hasChanges = computed(() => {
return changedExtensions.value.length > 0;
});
const updateExtensionStatus = /* @__PURE__ */ __name(() => {
const editingDisabledExtensionNames = Object.entries(
editingEnabledExtensions.value
).filter(([_, enabled]) => !enabled).map(([name]) => name);
settingStore.set("Comfy.Extension.Disabled", [
...extensionStore.inactiveDisabledExtensionNames,
...editingDisabledExtensionNames
]);
}, "updateExtensionStatus");
const applyChanges = /* @__PURE__ */ __name(() => {
window.location.reload();
}, "applyChanges");
return (_ctx, _cache) => {
return openBlock(), createElementBlock("div", _hoisted_1, [
createVNode(unref(script$2), {
value: unref(extensionStore).extensions,
stripedRows: "",
size: "small"
}, {
default: withCtx(() => [
createVNode(unref(script), {
field: "name",
header: _ctx.$t("extensionName"),
sortable: ""
}, null, 8, ["header"]),
createVNode(unref(script), { pt: {
bodyCell: "flex items-center justify-end"
} }, {
body: withCtx((slotProps) => [
createVNode(unref(script$1), {
modelValue: editingEnabledExtensions.value[slotProps.data.name],
"onUpdate:modelValue": /* @__PURE__ */ __name(($event) => editingEnabledExtensions.value[slotProps.data.name] = $event, "onUpdate:modelValue"),
onChange: updateExtensionStatus
}, null, 8, ["modelValue", "onUpdate:modelValue"])
]),
_: 1
})
]),
_: 1
}, 8, ["value"]),
createBaseVNode("div", _hoisted_2, [
hasChanges.value ? (openBlock(), createBlock(unref(script$3), {
key: 0,
severity: "info"
}, {
default: withCtx(() => [
createBaseVNode("ul", null, [
(openBlock(true), createElementBlock(Fragment, null, renderList(changedExtensions.value, (ext) => {
return openBlock(), createElementBlock("li", {
key: ext.name
}, [
createBaseVNode("span", null, toDisplayString(unref(extensionStore).isExtensionEnabled(ext.name) ? "[-]" : "[+]"), 1),
createTextVNode(" " + toDisplayString(ext.name), 1)
]);
}), 128))
])
]),
_: 1
})) : createCommentVNode("", true),
createVNode(unref(script$4), {
label: _ctx.$t("reloadToApplyChanges"),
icon: "pi pi-refresh",
onClick: applyChanges,
disabled: !hasChanges.value,
text: "",
fluid: "",
severity: "danger"
}, null, 8, ["label", "disabled"])
])
]);
};
}
});
export {
_sfc_main as default
};
//# sourceMappingURL=ExtensionPanel-CfMfcLgI.js.map

View File

@@ -1 +0,0 @@
{"version":3,"file":"ExtensionPanel-CfMfcLgI.js","sources":["../../src/components/dialog/content/setting/ExtensionPanel.vue"],"sourcesContent":["<template>\n <div class=\"extension-panel\">\n <DataTable :value=\"extensionStore.extensions\" stripedRows size=\"small\">\n <Column field=\"name\" :header=\"$t('extensionName')\" sortable></Column>\n <Column\n :pt=\"{\n bodyCell: 'flex items-center justify-end'\n }\"\n >\n <template #body=\"slotProps\">\n <ToggleSwitch\n v-model=\"editingEnabledExtensions[slotProps.data.name]\"\n @change=\"updateExtensionStatus\"\n />\n </template>\n </Column>\n </DataTable>\n <div class=\"mt-4\">\n <Message v-if=\"hasChanges\" severity=\"info\">\n <ul>\n <li v-for=\"ext in changedExtensions\" :key=\"ext.name\">\n <span>\n {{ extensionStore.isExtensionEnabled(ext.name) ? '[-]' : '[+]' }}\n </span>\n {{ ext.name }}\n </li>\n </ul>\n </Message>\n <Button\n :label=\"$t('reloadToApplyChanges')\"\n icon=\"pi pi-refresh\"\n @click=\"applyChanges\"\n :disabled=\"!hasChanges\"\n text\n fluid\n severity=\"danger\"\n />\n </div>\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport { ref, computed, onMounted } from 'vue'\nimport { useExtensionStore } from '@/stores/extensionStore'\nimport { useSettingStore } from '@/stores/settingStore'\nimport DataTable from 'primevue/datatable'\nimport Column from 'primevue/column'\nimport ToggleSwitch from 'primevue/toggleswitch'\nimport Button from 'primevue/button'\nimport Message from 'primevue/message'\n\nconst extensionStore = useExtensionStore()\nconst settingStore = useSettingStore()\n\nconst editingEnabledExtensions = ref<Record<string, boolean>>({})\n\nonMounted(() => {\n extensionStore.extensions.forEach((ext) => {\n editingEnabledExtensions.value[ext.name] =\n extensionStore.isExtensionEnabled(ext.name)\n })\n})\n\nconst changedExtensions = computed(() => {\n return extensionStore.extensions.filter(\n (ext) =>\n editingEnabledExtensions.value[ext.name] !==\n extensionStore.isExtensionEnabled(ext.name)\n )\n})\n\nconst hasChanges = computed(() => {\n return changedExtensions.value.length > 0\n})\n\nconst updateExtensionStatus = () => {\n const editingDisabledExtensionNames = Object.entries(\n editingEnabledExtensions.value\n )\n .filter(([_, enabled]) => !enabled)\n .map(([name]) => name)\n\n settingStore.set('Comfy.Extension.Disabled', [\n ...extensionStore.inactiveDisabledExtensionNames,\n ...editingDisabledExtensionNames\n ])\n}\n\nconst applyChanges = () => {\n // Refresh the page to apply changes\n window.location.reload()\n}\n</script>\n"],"names":[],"mappings":";;;;;;;;;;AAmDA,UAAM,iBAAiB;AACvB,UAAM,eAAe;AAEf,UAAA,2BAA2B,IAA6B,CAAA,CAAE;AAEhE,cAAU,MAAM;AACC,qBAAA,WAAW,QAAQ,CAAC,QAAQ;AACzC,iCAAyB,MAAM,IAAI,IAAI,IACrC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA,CAC7C;AAAA,IAAA,CACF;AAEK,UAAA,oBAAoB,SAAS,MAAM;AACvC,aAAO,eAAe,WAAW;AAAA,QAC/B,CAAC,QACC,yBAAyB,MAAM,IAAI,IAAI,MACvC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA;AAAA,IAC9C,CACD;AAEK,UAAA,aAAa,SAAS,MAAM;AACzB,aAAA,kBAAkB,MAAM,SAAS;AAAA,IAAA,CACzC;AAED,UAAM,wBAAwB,6BAAM;AAClC,YAAM,gCAAgC,OAAO;AAAA,QAC3C,yBAAyB;AAAA,MAExB,EAAA,OAAO,CAAC,CAAC,GAAG,OAAO,MAAM,CAAC,OAAO,EACjC,IAAI,CAAC,CAAC,IAAI,MAAM,IAAI;AAEvB,mBAAa,IAAI,4BAA4B;AAAA,QAC3C,GAAG,eAAe;AAAA,QAClB,GAAG;AAAA,MAAA,CACJ;AAAA,IAAA,GAV2B;AAa9B,UAAM,eAAe,6BAAM;AAEzB,aAAO,SAAS;IAAO,GAFJ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}

117
web/assets/ExtensionPanel-DsD42OtO.js generated vendored Normal file
View File

@@ -0,0 +1,117 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, r as ref, c6 as FilterMatchMode, ca as useExtensionStore, u as useSettingStore, o as onMounted, q as computed, g as openBlock, x as createBlock, y as withCtx, i as createVNode, c7 as SearchBox, z as unref, bT as script, A as createBaseVNode, h as createElementBlock, O as renderList, a6 as toDisplayString, aw as createTextVNode, N as Fragment, D as script$1, j as createCommentVNode, bV as script$3, c8 as _sfc_main$1 } from "./index-CoOvI8ZH.js";
import { s as script$2, a as script$4 } from "./index-DK6Kev7f.js";
import "./index-D4DWQPPQ.js";
const _hoisted_1 = { class: "flex justify-end" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "ExtensionPanel",
setup(__props) {
const filters = ref({
global: { value: "", matchMode: FilterMatchMode.CONTAINS }
});
const extensionStore = useExtensionStore();
const settingStore = useSettingStore();
const editingEnabledExtensions = ref({});
onMounted(() => {
extensionStore.extensions.forEach((ext) => {
editingEnabledExtensions.value[ext.name] = extensionStore.isExtensionEnabled(ext.name);
});
});
const changedExtensions = computed(() => {
return extensionStore.extensions.filter(
(ext) => editingEnabledExtensions.value[ext.name] !== extensionStore.isExtensionEnabled(ext.name)
);
});
const hasChanges = computed(() => {
return changedExtensions.value.length > 0;
});
const updateExtensionStatus = /* @__PURE__ */ __name(() => {
const editingDisabledExtensionNames = Object.entries(
editingEnabledExtensions.value
).filter(([_, enabled]) => !enabled).map(([name]) => name);
settingStore.set("Comfy.Extension.Disabled", [
...extensionStore.inactiveDisabledExtensionNames,
...editingDisabledExtensionNames
]);
}, "updateExtensionStatus");
const applyChanges = /* @__PURE__ */ __name(() => {
window.location.reload();
}, "applyChanges");
return (_ctx, _cache) => {
return openBlock(), createBlock(_sfc_main$1, {
value: "Extension",
class: "extension-panel"
}, {
header: withCtx(() => [
createVNode(SearchBox, {
modelValue: filters.value["global"].value,
"onUpdate:modelValue": _cache[0] || (_cache[0] = ($event) => filters.value["global"].value = $event),
placeholder: _ctx.$t("searchExtensions") + "..."
}, null, 8, ["modelValue", "placeholder"]),
hasChanges.value ? (openBlock(), createBlock(unref(script), {
key: 0,
severity: "info",
"pt:text": "w-full"
}, {
default: withCtx(() => [
createBaseVNode("ul", null, [
(openBlock(true), createElementBlock(Fragment, null, renderList(changedExtensions.value, (ext) => {
return openBlock(), createElementBlock("li", {
key: ext.name
}, [
createBaseVNode("span", null, toDisplayString(unref(extensionStore).isExtensionEnabled(ext.name) ? "[-]" : "[+]"), 1),
createTextVNode(" " + toDisplayString(ext.name), 1)
]);
}), 128))
]),
createBaseVNode("div", _hoisted_1, [
createVNode(unref(script$1), {
label: _ctx.$t("reloadToApplyChanges"),
onClick: applyChanges,
outlined: "",
severity: "danger"
}, null, 8, ["label"])
])
]),
_: 1
})) : createCommentVNode("", true)
]),
default: withCtx(() => [
createVNode(unref(script$4), {
value: unref(extensionStore).extensions,
stripedRows: "",
size: "small",
filters: filters.value
}, {
default: withCtx(() => [
createVNode(unref(script$2), {
field: "name",
header: _ctx.$t("extensionName"),
sortable: ""
}, null, 8, ["header"]),
createVNode(unref(script$2), { pt: {
bodyCell: "flex items-center justify-end"
} }, {
body: withCtx((slotProps) => [
createVNode(unref(script$3), {
modelValue: editingEnabledExtensions.value[slotProps.data.name],
"onUpdate:modelValue": /* @__PURE__ */ __name(($event) => editingEnabledExtensions.value[slotProps.data.name] = $event, "onUpdate:modelValue"),
onChange: updateExtensionStatus
}, null, 8, ["modelValue", "onUpdate:modelValue"])
]),
_: 1
})
]),
_: 1
}, 8, ["value", "filters"])
]),
_: 1
});
};
}
});
export {
_sfc_main as default
};
//# sourceMappingURL=ExtensionPanel-DsD42OtO.js.map

1
web/assets/ExtensionPanel-DsD42OtO.js.map generated vendored Normal file
View File

@@ -0,0 +1 @@
{"version":3,"file":"ExtensionPanel-DsD42OtO.js","sources":["../../src/components/dialog/content/setting/ExtensionPanel.vue"],"sourcesContent":["<template>\n <PanelTemplate value=\"Extension\" class=\"extension-panel\">\n <template #header>\n <SearchBox\n v-model=\"filters['global'].value\"\n :placeholder=\"$t('searchExtensions') + '...'\"\n />\n <Message v-if=\"hasChanges\" severity=\"info\" pt:text=\"w-full\">\n <ul>\n <li v-for=\"ext in changedExtensions\" :key=\"ext.name\">\n <span>\n {{ extensionStore.isExtensionEnabled(ext.name) ? '[-]' : '[+]' }}\n </span>\n {{ ext.name }}\n </li>\n </ul>\n <div class=\"flex justify-end\">\n <Button\n :label=\"$t('reloadToApplyChanges')\"\n @click=\"applyChanges\"\n outlined\n severity=\"danger\"\n />\n </div>\n </Message>\n </template>\n <DataTable\n :value=\"extensionStore.extensions\"\n stripedRows\n size=\"small\"\n :filters=\"filters\"\n >\n <Column field=\"name\" :header=\"$t('extensionName')\" sortable></Column>\n <Column\n :pt=\"{\n bodyCell: 'flex items-center justify-end'\n }\"\n >\n <template #body=\"slotProps\">\n <ToggleSwitch\n v-model=\"editingEnabledExtensions[slotProps.data.name]\"\n @change=\"updateExtensionStatus\"\n />\n </template>\n </Column>\n </DataTable>\n </PanelTemplate>\n</template>\n\n<script setup lang=\"ts\">\nimport { ref, computed, onMounted } from 'vue'\nimport { useExtensionStore } from '@/stores/extensionStore'\nimport { useSettingStore } from '@/stores/settingStore'\nimport DataTable from 'primevue/datatable'\nimport Column from 'primevue/column'\nimport ToggleSwitch from 'primevue/toggleswitch'\nimport Button from 'primevue/button'\nimport Message from 'primevue/message'\nimport { FilterMatchMode } from '@primevue/core/api'\nimport PanelTemplate from './PanelTemplate.vue'\nimport SearchBox from '@/components/common/SearchBox.vue'\n\nconst filters = ref({\n global: { value: '', matchMode: FilterMatchMode.CONTAINS }\n})\n\nconst extensionStore = useExtensionStore()\nconst settingStore = useSettingStore()\n\nconst editingEnabledExtensions = ref<Record<string, boolean>>({})\n\nonMounted(() => {\n extensionStore.extensions.forEach((ext) => {\n editingEnabledExtensions.value[ext.name] =\n extensionStore.isExtensionEnabled(ext.name)\n })\n})\n\nconst changedExtensions = computed(() => {\n return extensionStore.extensions.filter(\n (ext) =>\n editingEnabledExtensions.value[ext.name] !==\n extensionStore.isExtensionEnabled(ext.name)\n )\n})\n\nconst hasChanges = computed(() => {\n return changedExtensions.value.length > 0\n})\n\nconst updateExtensionStatus = () => {\n const editingDisabledExtensionNames = Object.entries(\n editingEnabledExtensions.value\n )\n .filter(([_, enabled]) => !enabled)\n .map(([name]) => name)\n\n settingStore.set('Comfy.Extension.Disabled', [\n ...extensionStore.inactiveDisabledExtensionNames,\n ...editingDisabledExtensionNames\n ])\n}\n\nconst applyChanges = () => {\n // Refresh the page to apply changes\n window.location.reload()\n}\n</script>\n"],"names":[],"mappings":";;;;;;;;;AA8DA,UAAM,UAAU,IAAI;AAAA,MAClB,QAAQ,EAAE,OAAO,IAAI,WAAW,gBAAgB,SAAS;AAAA,IAAA,CAC1D;AAED,UAAM,iBAAiB;AACvB,UAAM,eAAe;AAEf,UAAA,2BAA2B,IAA6B,CAAA,CAAE;AAEhE,cAAU,MAAM;AACC,qBAAA,WAAW,QAAQ,CAAC,QAAQ;AACzC,iCAAyB,MAAM,IAAI,IAAI,IACrC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA,CAC7C;AAAA,IAAA,CACF;AAEK,UAAA,oBAAoB,SAAS,MAAM;AACvC,aAAO,eAAe,WAAW;AAAA,QAC/B,CAAC,QACC,yBAAyB,MAAM,IAAI,IAAI,MACvC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA;AAAA,IAC9C,CACD;AAEK,UAAA,aAAa,SAAS,MAAM;AACzB,aAAA,kBAAkB,MAAM,SAAS;AAAA,IAAA,CACzC;AAED,UAAM,wBAAwB,6BAAM;AAClC,YAAM,gCAAgC,OAAO;AAAA,QAC3C,yBAAyB;AAAA,MAExB,EAAA,OAAO,CAAC,CAAC,GAAG,OAAO,MAAM,CAAC,OAAO,EACjC,IAAI,CAAC,CAAC,IAAI,MAAM,IAAI;AAEvB,mBAAa,IAAI,4BAA4B;AAAA,QAC3C,GAAG,eAAe;AAAA,QAClB,GAAG;AAAA,MAAA,CACJ;AAAA,IAAA,GAV2B;AAa9B,UAAM,eAAe,6BAAM;AAEzB,aAAO,SAAS;IAAO,GAFJ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

1
web/assets/GraphView-BW5soyxY.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

View File

@@ -106,32 +106,6 @@
margin: -0.125rem 0.125rem;
}
.comfy-vue-node-search-container[data-v-2d409367] {
display: flex;
width: 100%;
min-width: 26rem;
align-items: center;
justify-content: center;
}
.comfy-vue-node-search-container[data-v-2d409367] * {
pointer-events: auto;
}
.comfy-vue-node-preview-container[data-v-2d409367] {
position: absolute;
left: -350px;
top: 50px;
}
.comfy-vue-node-search-box[data-v-2d409367] {
z-index: 10;
flex-grow: 1;
}
._filter-button[data-v-2d409367] {
z-index: 10;
}
._dialog[data-v-2d409367] {
min-width: 26rem;
}
.invisible-dialog-root {
width: 60%;
min-width: 24rem;
@@ -184,10 +158,10 @@
z-index: 9999;
}
[data-v-9eb975c3] .p-togglebutton::before {
[data-v-783f8efe] .p-togglebutton::before {
display: none
}
[data-v-9eb975c3] .p-togglebutton {
[data-v-783f8efe] .p-togglebutton {
position: relative;
flex-shrink: 0;
border-radius: 0px;
@@ -195,14 +169,14 @@
padding-left: 0.5rem;
padding-right: 0.5rem
}
[data-v-9eb975c3] .p-togglebutton.p-togglebutton-checked {
[data-v-783f8efe] .p-togglebutton.p-togglebutton-checked {
border-bottom-width: 2px;
border-bottom-color: var(--p-button-text-primary-color)
}
[data-v-9eb975c3] .p-togglebutton-checked .close-button,[data-v-9eb975c3] .p-togglebutton:hover .close-button {
[data-v-783f8efe] .p-togglebutton-checked .close-button,[data-v-783f8efe] .p-togglebutton:hover .close-button {
visibility: visible
}
.status-indicator[data-v-9eb975c3] {
.status-indicator[data-v-783f8efe] {
position: absolute;
font-weight: 700;
font-size: 1.5rem;
@@ -210,10 +184,10 @@
left: 50%;
transform: translate(-50%, -50%)
}
[data-v-9eb975c3] .p-togglebutton:hover .status-indicator {
[data-v-783f8efe] .p-togglebutton:hover .status-indicator {
display: none
}
[data-v-9eb975c3] .p-togglebutton .close-button {
[data-v-783f8efe] .p-togglebutton .close-button {
visibility: hidden
}
@@ -241,26 +215,26 @@
border-bottom-right-radius: 0;
}
.actionbar[data-v-eb6e9acf] {
.actionbar[data-v-542a7001] {
pointer-events: all;
position: fixed;
z-index: 1000;
}
.actionbar.is-docked[data-v-eb6e9acf] {
.actionbar.is-docked[data-v-542a7001] {
position: static;
border-style: none;
background-color: transparent;
padding: 0px;
}
.actionbar.is-dragging[data-v-eb6e9acf] {
.actionbar.is-dragging[data-v-542a7001] {
-webkit-user-select: none;
-moz-user-select: none;
user-select: none;
}
[data-v-eb6e9acf] .p-panel-content {
[data-v-542a7001] .p-panel-content {
padding: 0.25rem;
}
[data-v-eb6e9acf] .p-panel-header {
[data-v-542a7001] .p-panel-header {
display: none;
}

File diff suppressed because one or more lines are too long

1
web/assets/InstallView-C6UIhIu4.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

8
web/assets/KeybindingPanel-C-7KE-Kw.css generated vendored Normal file
View File

@@ -0,0 +1,8 @@
[data-v-9d7e362e] .p-datatable-tbody > tr > td {
padding: 0.25rem;
min-height: 2rem
}
[data-v-9d7e362e] .p-datatable-row-selected .actions,[data-v-9d7e362e] .p-datatable-selectable-row:hover .actions {
visibility: visible
}

View File

@@ -1,8 +0,0 @@
[data-v-2d8b3a76] .p-datatable-tbody > tr > td {
padding: 0.25rem;
min-height: 2rem
}
[data-v-2d8b3a76] .p-datatable-row-selected .actions,[data-v-2d8b3a76] .p-datatable-selectable-row:hover .actions {
visibility: visible
}

View File

@@ -1,274 +0,0 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, q as computed, g as openBlock, h as createElementBlock, N as Fragment, O as renderList, i as createVNode, y as withCtx, aw as createTextVNode, a6 as toDisplayString, z as unref, aA as script, j as createCommentVNode, r as ref, c3 as FilterMatchMode, M as useKeybindingStore, F as useCommandStore, aJ as watchEffect, be as useToast, t as resolveDirective, c4 as SearchBox, A as createBaseVNode, D as script$2, x as createBlock, ao as script$4, bi as withModifiers, bR as script$5, aH as script$6, v as withDirectives, P as pushScopeId, Q as popScopeId, b$ as KeyComboImpl, c5 as KeybindingImpl, _ as _export_sfc } from "./index-B6dYHNhg.js";
import { s as script$1, a as script$3 } from "./index-CjwCGacA.js";
import "./index-MX9DEi8Q.js";
const _hoisted_1$1 = {
key: 0,
class: "px-2"
};
const _sfc_main$1 = /* @__PURE__ */ defineComponent({
__name: "KeyComboDisplay",
props: {
keyCombo: {},
isModified: { type: Boolean, default: false }
},
setup(__props) {
const props = __props;
const keySequences = computed(() => props.keyCombo.getKeySequences());
return (_ctx, _cache) => {
return openBlock(), createElementBlock("span", null, [
(openBlock(true), createElementBlock(Fragment, null, renderList(keySequences.value, (sequence, index) => {
return openBlock(), createElementBlock(Fragment, { key: index }, [
createVNode(unref(script), {
severity: _ctx.isModified ? "info" : "secondary"
}, {
default: withCtx(() => [
createTextVNode(toDisplayString(sequence), 1)
]),
_: 2
}, 1032, ["severity"]),
index < keySequences.value.length - 1 ? (openBlock(), createElementBlock("span", _hoisted_1$1, "+")) : createCommentVNode("", true)
], 64);
}), 128))
]);
};
}
});
const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-2d8b3a76"), n = n(), popScopeId(), n), "_withScopeId");
const _hoisted_1 = { class: "keybinding-panel" };
const _hoisted_2 = { class: "actions invisible flex flex-row" };
const _hoisted_3 = ["title"];
const _hoisted_4 = { key: 1 };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "KeybindingPanel",
setup(__props) {
const filters = ref({
global: { value: "", matchMode: FilterMatchMode.CONTAINS }
});
const keybindingStore = useKeybindingStore();
const commandStore = useCommandStore();
const commandsData = computed(() => {
return Object.values(commandStore.commands).map((command) => ({
id: command.id,
keybinding: keybindingStore.getKeybindingByCommandId(command.id)
}));
});
const selectedCommandData = ref(null);
const editDialogVisible = ref(false);
const newBindingKeyCombo = ref(null);
const currentEditingCommand = ref(null);
const keybindingInput = ref(null);
const existingKeybindingOnCombo = computed(() => {
if (!currentEditingCommand.value) {
return null;
}
if (currentEditingCommand.value.keybinding?.combo?.equals(
newBindingKeyCombo.value
)) {
return null;
}
if (!newBindingKeyCombo.value) {
return null;
}
return keybindingStore.getKeybinding(newBindingKeyCombo.value);
});
function editKeybinding(commandData) {
currentEditingCommand.value = commandData;
newBindingKeyCombo.value = commandData.keybinding ? commandData.keybinding.combo : null;
editDialogVisible.value = true;
}
__name(editKeybinding, "editKeybinding");
watchEffect(() => {
if (editDialogVisible.value) {
setTimeout(() => {
keybindingInput.value?.$el?.focus();
}, 300);
}
});
function removeKeybinding(commandData) {
if (commandData.keybinding) {
keybindingStore.unsetKeybinding(commandData.keybinding);
keybindingStore.persistUserKeybindings();
}
}
__name(removeKeybinding, "removeKeybinding");
function captureKeybinding(event) {
const keyCombo = KeyComboImpl.fromEvent(event);
newBindingKeyCombo.value = keyCombo;
}
__name(captureKeybinding, "captureKeybinding");
function cancelEdit() {
editDialogVisible.value = false;
currentEditingCommand.value = null;
newBindingKeyCombo.value = null;
}
__name(cancelEdit, "cancelEdit");
function saveKeybinding() {
if (currentEditingCommand.value && newBindingKeyCombo.value) {
const updated = keybindingStore.updateKeybindingOnCommand(
new KeybindingImpl({
commandId: currentEditingCommand.value.id,
combo: newBindingKeyCombo.value
})
);
if (updated) {
keybindingStore.persistUserKeybindings();
}
}
cancelEdit();
}
__name(saveKeybinding, "saveKeybinding");
const toast = useToast();
async function resetKeybindings() {
keybindingStore.resetKeybindings();
await keybindingStore.persistUserKeybindings();
toast.add({
severity: "info",
summary: "Info",
detail: "Keybindings reset",
life: 3e3
});
}
__name(resetKeybindings, "resetKeybindings");
return (_ctx, _cache) => {
const _directive_tooltip = resolveDirective("tooltip");
return openBlock(), createElementBlock("div", _hoisted_1, [
createVNode(unref(script$3), {
value: commandsData.value,
selection: selectedCommandData.value,
"onUpdate:selection": _cache[1] || (_cache[1] = ($event) => selectedCommandData.value = $event),
"global-filter-fields": ["id"],
filters: filters.value,
selectionMode: "single",
stripedRows: "",
pt: {
header: "px-0"
}
}, {
header: withCtx(() => [
createVNode(SearchBox, {
modelValue: filters.value["global"].value,
"onUpdate:modelValue": _cache[0] || (_cache[0] = ($event) => filters.value["global"].value = $event),
placeholder: _ctx.$t("searchKeybindings") + "..."
}, null, 8, ["modelValue", "placeholder"])
]),
default: withCtx(() => [
createVNode(unref(script$1), {
field: "actions",
header: ""
}, {
body: withCtx((slotProps) => [
createBaseVNode("div", _hoisted_2, [
createVNode(unref(script$2), {
icon: "pi pi-pencil",
class: "p-button-text",
onClick: /* @__PURE__ */ __name(($event) => editKeybinding(slotProps.data), "onClick")
}, null, 8, ["onClick"]),
createVNode(unref(script$2), {
icon: "pi pi-trash",
class: "p-button-text p-button-danger",
onClick: /* @__PURE__ */ __name(($event) => removeKeybinding(slotProps.data), "onClick"),
disabled: !slotProps.data.keybinding
}, null, 8, ["onClick", "disabled"])
])
]),
_: 1
}),
createVNode(unref(script$1), {
field: "id",
header: "Command ID",
sortable: "",
class: "max-w-64 2xl:max-w-full"
}, {
body: withCtx((slotProps) => [
createBaseVNode("div", {
class: "overflow-hidden text-ellipsis whitespace-nowrap",
title: slotProps.data.id
}, toDisplayString(slotProps.data.id), 9, _hoisted_3)
]),
_: 1
}),
createVNode(unref(script$1), {
field: "keybinding",
header: "Keybinding"
}, {
body: withCtx((slotProps) => [
slotProps.data.keybinding ? (openBlock(), createBlock(_sfc_main$1, {
key: 0,
keyCombo: slotProps.data.keybinding.combo,
isModified: unref(keybindingStore).isCommandKeybindingModified(slotProps.data.id)
}, null, 8, ["keyCombo", "isModified"])) : (openBlock(), createElementBlock("span", _hoisted_4, "-"))
]),
_: 1
})
]),
_: 1
}, 8, ["value", "selection", "filters"]),
createVNode(unref(script$6), {
class: "min-w-96",
visible: editDialogVisible.value,
"onUpdate:visible": _cache[2] || (_cache[2] = ($event) => editDialogVisible.value = $event),
modal: "",
header: currentEditingCommand.value?.id,
onHide: cancelEdit
}, {
footer: withCtx(() => [
createVNode(unref(script$2), {
label: "Save",
icon: "pi pi-check",
onClick: saveKeybinding,
disabled: !!existingKeybindingOnCombo.value,
autofocus: ""
}, null, 8, ["disabled"])
]),
default: withCtx(() => [
createBaseVNode("div", null, [
createVNode(unref(script$4), {
class: "mb-2 text-center",
ref_key: "keybindingInput",
ref: keybindingInput,
modelValue: newBindingKeyCombo.value?.toString() ?? "",
placeholder: "Press keys for new binding",
onKeydown: withModifiers(captureKeybinding, ["stop", "prevent"]),
autocomplete: "off",
fluid: "",
invalid: !!existingKeybindingOnCombo.value
}, null, 8, ["modelValue", "invalid"]),
existingKeybindingOnCombo.value ? (openBlock(), createBlock(unref(script$5), {
key: 0,
severity: "error"
}, {
default: withCtx(() => [
createTextVNode(" Keybinding already exists on "),
createVNode(unref(script), {
severity: "secondary",
value: existingKeybindingOnCombo.value.commandId
}, null, 8, ["value"])
]),
_: 1
})) : createCommentVNode("", true)
])
]),
_: 1
}, 8, ["visible", "header"]),
withDirectives(createVNode(unref(script$2), {
class: "mt-4",
label: _ctx.$t("reset"),
icon: "pi pi-trash",
severity: "danger",
fluid: "",
text: "",
onClick: resetKeybindings
}, null, 8, ["label"]), [
[_directive_tooltip, _ctx.$t("resetKeybindingsTooltip")]
])
]);
};
}
});
const KeybindingPanel = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-2d8b3a76"]]);
export {
KeybindingPanel as default
};
//# sourceMappingURL=KeybindingPanel-DcEfyPZZ.js.map

File diff suppressed because one or more lines are too long

279
web/assets/KeybindingPanel-lcJrxHwZ.js generated vendored Normal file
View File

@@ -0,0 +1,279 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, q as computed, g as openBlock, h as createElementBlock, N as Fragment, O as renderList, i as createVNode, y as withCtx, aw as createTextVNode, a6 as toDisplayString, z as unref, aA as script, j as createCommentVNode, r as ref, c6 as FilterMatchMode, M as useKeybindingStore, F as useCommandStore, aJ as watchEffect, bg as useToast, t as resolveDirective, x as createBlock, c7 as SearchBox, A as createBaseVNode, D as script$2, ao as script$4, bk as withModifiers, bT as script$5, aH as script$6, v as withDirectives, c8 as _sfc_main$2, P as pushScopeId, Q as popScopeId, c1 as KeyComboImpl, c9 as KeybindingImpl, _ as _export_sfc } from "./index-CoOvI8ZH.js";
import { s as script$1, a as script$3 } from "./index-DK6Kev7f.js";
import "./index-D4DWQPPQ.js";
const _hoisted_1$1 = {
key: 0,
class: "px-2"
};
const _sfc_main$1 = /* @__PURE__ */ defineComponent({
__name: "KeyComboDisplay",
props: {
keyCombo: {},
isModified: { type: Boolean, default: false }
},
setup(__props) {
const props = __props;
const keySequences = computed(() => props.keyCombo.getKeySequences());
return (_ctx, _cache) => {
return openBlock(), createElementBlock("span", null, [
(openBlock(true), createElementBlock(Fragment, null, renderList(keySequences.value, (sequence, index) => {
return openBlock(), createElementBlock(Fragment, { key: index }, [
createVNode(unref(script), {
severity: _ctx.isModified ? "info" : "secondary"
}, {
default: withCtx(() => [
createTextVNode(toDisplayString(sequence), 1)
]),
_: 2
}, 1032, ["severity"]),
index < keySequences.value.length - 1 ? (openBlock(), createElementBlock("span", _hoisted_1$1, "+")) : createCommentVNode("", true)
], 64);
}), 128))
]);
};
}
});
const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-9d7e362e"), n = n(), popScopeId(), n), "_withScopeId");
const _hoisted_1 = { class: "actions invisible flex flex-row" };
const _hoisted_2 = ["title"];
const _hoisted_3 = { key: 1 };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "KeybindingPanel",
setup(__props) {
const filters = ref({
global: { value: "", matchMode: FilterMatchMode.CONTAINS }
});
const keybindingStore = useKeybindingStore();
const commandStore = useCommandStore();
const commandsData = computed(() => {
return Object.values(commandStore.commands).map((command) => ({
id: command.id,
keybinding: keybindingStore.getKeybindingByCommandId(command.id)
}));
});
const selectedCommandData = ref(null);
const editDialogVisible = ref(false);
const newBindingKeyCombo = ref(null);
const currentEditingCommand = ref(null);
const keybindingInput = ref(null);
const existingKeybindingOnCombo = computed(() => {
if (!currentEditingCommand.value) {
return null;
}
if (currentEditingCommand.value.keybinding?.combo?.equals(
newBindingKeyCombo.value
)) {
return null;
}
if (!newBindingKeyCombo.value) {
return null;
}
return keybindingStore.getKeybinding(newBindingKeyCombo.value);
});
function editKeybinding(commandData) {
currentEditingCommand.value = commandData;
newBindingKeyCombo.value = commandData.keybinding ? commandData.keybinding.combo : null;
editDialogVisible.value = true;
}
__name(editKeybinding, "editKeybinding");
watchEffect(() => {
if (editDialogVisible.value) {
setTimeout(() => {
keybindingInput.value?.$el?.focus();
}, 300);
}
});
function removeKeybinding(commandData) {
if (commandData.keybinding) {
keybindingStore.unsetKeybinding(commandData.keybinding);
keybindingStore.persistUserKeybindings();
}
}
__name(removeKeybinding, "removeKeybinding");
function captureKeybinding(event) {
const keyCombo = KeyComboImpl.fromEvent(event);
newBindingKeyCombo.value = keyCombo;
}
__name(captureKeybinding, "captureKeybinding");
function cancelEdit() {
editDialogVisible.value = false;
currentEditingCommand.value = null;
newBindingKeyCombo.value = null;
}
__name(cancelEdit, "cancelEdit");
function saveKeybinding() {
if (currentEditingCommand.value && newBindingKeyCombo.value) {
const updated = keybindingStore.updateKeybindingOnCommand(
new KeybindingImpl({
commandId: currentEditingCommand.value.id,
combo: newBindingKeyCombo.value
})
);
if (updated) {
keybindingStore.persistUserKeybindings();
}
}
cancelEdit();
}
__name(saveKeybinding, "saveKeybinding");
const toast = useToast();
async function resetKeybindings() {
keybindingStore.resetKeybindings();
await keybindingStore.persistUserKeybindings();
toast.add({
severity: "info",
summary: "Info",
detail: "Keybindings reset",
life: 3e3
});
}
__name(resetKeybindings, "resetKeybindings");
return (_ctx, _cache) => {
const _directive_tooltip = resolveDirective("tooltip");
return openBlock(), createBlock(_sfc_main$2, {
value: "Keybinding",
class: "keybinding-panel"
}, {
header: withCtx(() => [
createVNode(SearchBox, {
modelValue: filters.value["global"].value,
"onUpdate:modelValue": _cache[0] || (_cache[0] = ($event) => filters.value["global"].value = $event),
placeholder: _ctx.$t("searchKeybindings") + "..."
}, null, 8, ["modelValue", "placeholder"])
]),
default: withCtx(() => [
createVNode(unref(script$3), {
value: commandsData.value,
selection: selectedCommandData.value,
"onUpdate:selection": _cache[1] || (_cache[1] = ($event) => selectedCommandData.value = $event),
"global-filter-fields": ["id"],
filters: filters.value,
selectionMode: "single",
stripedRows: "",
pt: {
header: "px-0"
}
}, {
default: withCtx(() => [
createVNode(unref(script$1), {
field: "actions",
header: ""
}, {
body: withCtx((slotProps) => [
createBaseVNode("div", _hoisted_1, [
createVNode(unref(script$2), {
icon: "pi pi-pencil",
class: "p-button-text",
onClick: /* @__PURE__ */ __name(($event) => editKeybinding(slotProps.data), "onClick")
}, null, 8, ["onClick"]),
createVNode(unref(script$2), {
icon: "pi pi-trash",
class: "p-button-text p-button-danger",
onClick: /* @__PURE__ */ __name(($event) => removeKeybinding(slotProps.data), "onClick"),
disabled: !slotProps.data.keybinding
}, null, 8, ["onClick", "disabled"])
])
]),
_: 1
}),
createVNode(unref(script$1), {
field: "id",
header: "Command ID",
sortable: "",
class: "max-w-64 2xl:max-w-full"
}, {
body: withCtx((slotProps) => [
createBaseVNode("div", {
class: "overflow-hidden text-ellipsis whitespace-nowrap",
title: slotProps.data.id
}, toDisplayString(slotProps.data.id), 9, _hoisted_2)
]),
_: 1
}),
createVNode(unref(script$1), {
field: "keybinding",
header: "Keybinding"
}, {
body: withCtx((slotProps) => [
slotProps.data.keybinding ? (openBlock(), createBlock(_sfc_main$1, {
key: 0,
keyCombo: slotProps.data.keybinding.combo,
isModified: unref(keybindingStore).isCommandKeybindingModified(slotProps.data.id)
}, null, 8, ["keyCombo", "isModified"])) : (openBlock(), createElementBlock("span", _hoisted_3, "-"))
]),
_: 1
})
]),
_: 1
}, 8, ["value", "selection", "filters"]),
createVNode(unref(script$6), {
class: "min-w-96",
visible: editDialogVisible.value,
"onUpdate:visible": _cache[2] || (_cache[2] = ($event) => editDialogVisible.value = $event),
modal: "",
header: currentEditingCommand.value?.id,
onHide: cancelEdit
}, {
footer: withCtx(() => [
createVNode(unref(script$2), {
label: "Save",
icon: "pi pi-check",
onClick: saveKeybinding,
disabled: !!existingKeybindingOnCombo.value,
autofocus: ""
}, null, 8, ["disabled"])
]),
default: withCtx(() => [
createBaseVNode("div", null, [
createVNode(unref(script$4), {
class: "mb-2 text-center",
ref_key: "keybindingInput",
ref: keybindingInput,
modelValue: newBindingKeyCombo.value?.toString() ?? "",
placeholder: "Press keys for new binding",
onKeydown: withModifiers(captureKeybinding, ["stop", "prevent"]),
autocomplete: "off",
fluid: "",
invalid: !!existingKeybindingOnCombo.value
}, null, 8, ["modelValue", "invalid"]),
existingKeybindingOnCombo.value ? (openBlock(), createBlock(unref(script$5), {
key: 0,
severity: "error"
}, {
default: withCtx(() => [
createTextVNode(" Keybinding already exists on "),
createVNode(unref(script), {
severity: "secondary",
value: existingKeybindingOnCombo.value.commandId
}, null, 8, ["value"])
]),
_: 1
})) : createCommentVNode("", true)
])
]),
_: 1
}, 8, ["visible", "header"]),
withDirectives(createVNode(unref(script$2), {
class: "mt-4",
label: _ctx.$t("reset"),
icon: "pi pi-trash",
severity: "danger",
fluid: "",
text: "",
onClick: resetKeybindings
}, null, 8, ["label"]), [
[_directive_tooltip, _ctx.$t("resetKeybindingsTooltip")]
])
]),
_: 1
});
};
}
});
const KeybindingPanel = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-9d7e362e"]]);
export {
KeybindingPanel as default
};
//# sourceMappingURL=KeybindingPanel-lcJrxHwZ.js.map

1
web/assets/KeybindingPanel-lcJrxHwZ.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

150
web/assets/ServerConfigPanel-x68ubY-c.js generated vendored Normal file
View File

@@ -0,0 +1,150 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { A as createBaseVNode, g as openBlock, h as createElementBlock, aU as markRaw, d as defineComponent, u as useSettingStore, bw as storeToRefs, w as watch, cy as useCopyToClipboard, x as createBlock, y as withCtx, z as unref, bT as script, a6 as toDisplayString, O as renderList, N as Fragment, i as createVNode, D as script$1, j as createCommentVNode, bI as script$2, cz as formatCamelCase, cA as FormItem, c8 as _sfc_main$1, bN as electronAPI } from "./index-CoOvI8ZH.js";
import { u as useServerConfigStore } from "./serverConfigStore-cctR8PGG.js";
const _hoisted_1$1 = {
viewBox: "0 0 24 24",
width: "1.2em",
height: "1.2em"
};
const _hoisted_2$1 = /* @__PURE__ */ createBaseVNode("path", {
fill: "none",
stroke: "currentColor",
"stroke-linecap": "round",
"stroke-linejoin": "round",
"stroke-width": "2",
d: "m4 17l6-6l-6-6m8 14h8"
}, null, -1);
const _hoisted_3$1 = [
_hoisted_2$1
];
function render(_ctx, _cache) {
return openBlock(), createElementBlock("svg", _hoisted_1$1, [..._hoisted_3$1]);
}
__name(render, "render");
const __unplugin_components_0 = markRaw({ name: "lucide-terminal", render });
const _hoisted_1 = { class: "flex flex-col gap-2" };
const _hoisted_2 = { class: "flex justify-end gap-2" };
const _hoisted_3 = { class: "flex items-center justify-between" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "ServerConfigPanel",
setup(__props) {
const settingStore = useSettingStore();
const serverConfigStore = useServerConfigStore();
const {
serverConfigsByCategory,
serverConfigValues,
launchArgs,
commandLineArgs,
modifiedConfigs
} = storeToRefs(serverConfigStore);
const revertChanges = /* @__PURE__ */ __name(() => {
serverConfigStore.revertChanges();
}, "revertChanges");
const restartApp = /* @__PURE__ */ __name(() => {
electronAPI().restartApp();
}, "restartApp");
watch(launchArgs, (newVal) => {
settingStore.set("Comfy.Server.LaunchArgs", newVal);
});
watch(serverConfigValues, (newVal) => {
settingStore.set("Comfy.Server.ServerConfigValues", newVal);
});
const { copyToClipboard } = useCopyToClipboard();
const copyCommandLineArgs = /* @__PURE__ */ __name(async () => {
await copyToClipboard(commandLineArgs.value);
}, "copyCommandLineArgs");
return (_ctx, _cache) => {
const _component_i_lucide58terminal = __unplugin_components_0;
return openBlock(), createBlock(_sfc_main$1, {
value: "Server-Config",
class: "server-config-panel"
}, {
header: withCtx(() => [
createBaseVNode("div", _hoisted_1, [
unref(modifiedConfigs).length > 0 ? (openBlock(), createBlock(unref(script), {
key: 0,
severity: "info",
"pt:text": "w-full"
}, {
default: withCtx(() => [
createBaseVNode("p", null, toDisplayString(_ctx.$t("serverConfig.modifiedConfigs")), 1),
createBaseVNode("ul", null, [
(openBlock(true), createElementBlock(Fragment, null, renderList(unref(modifiedConfigs), (config) => {
return openBlock(), createElementBlock("li", {
key: config.id
}, toDisplayString(config.name) + ": " + toDisplayString(config.initialValue) + " → " + toDisplayString(config.value), 1);
}), 128))
]),
createBaseVNode("div", _hoisted_2, [
createVNode(unref(script$1), {
label: _ctx.$t("serverConfig.revertChanges"),
onClick: revertChanges,
outlined: ""
}, null, 8, ["label"]),
createVNode(unref(script$1), {
label: _ctx.$t("serverConfig.restart"),
onClick: restartApp,
outlined: "",
severity: "danger"
}, null, 8, ["label"])
])
]),
_: 1
})) : createCommentVNode("", true),
unref(commandLineArgs) ? (openBlock(), createBlock(unref(script), {
key: 1,
severity: "secondary",
"pt:text": "w-full"
}, {
icon: withCtx(() => [
createVNode(_component_i_lucide58terminal, { class: "text-xl font-bold" })
]),
default: withCtx(() => [
createBaseVNode("div", _hoisted_3, [
createBaseVNode("p", null, toDisplayString(unref(commandLineArgs)), 1),
createVNode(unref(script$1), {
icon: "pi pi-clipboard",
onClick: copyCommandLineArgs,
severity: "secondary",
text: ""
})
])
]),
_: 1
})) : createCommentVNode("", true)
])
]),
default: withCtx(() => [
(openBlock(true), createElementBlock(Fragment, null, renderList(Object.entries(unref(serverConfigsByCategory)), ([label, items], i) => {
return openBlock(), createElementBlock("div", { key: label }, [
i > 0 ? (openBlock(), createBlock(unref(script$2), { key: 0 })) : createCommentVNode("", true),
createBaseVNode("h3", null, toDisplayString(unref(formatCamelCase)(label)), 1),
(openBlock(true), createElementBlock(Fragment, null, renderList(items, (item) => {
return openBlock(), createElementBlock("div", {
key: item.name,
class: "flex items-center mb-4"
}, [
createVNode(FormItem, {
item,
formValue: item.value,
"onUpdate:formValue": /* @__PURE__ */ __name(($event) => item.value = $event, "onUpdate:formValue"),
id: item.id,
labelClass: {
"text-highlight": item.initialValue !== item.value
}
}, null, 8, ["item", "formValue", "onUpdate:formValue", "id", "labelClass"])
]);
}), 128))
]);
}), 128))
]),
_: 1
});
};
}
});
export {
_sfc_main as default
};
//# sourceMappingURL=ServerConfigPanel-x68ubY-c.js.map

1
web/assets/ServerConfigPanel-x68ubY-c.js.map generated vendored Normal file
View File

@@ -0,0 +1 @@
{"version":3,"file":"ServerConfigPanel-x68ubY-c.js","sources":["../../src/components/dialog/content/setting/ServerConfigPanel.vue"],"sourcesContent":["<template>\n <PanelTemplate value=\"Server-Config\" class=\"server-config-panel\">\n <template #header>\n <div class=\"flex flex-col gap-2\">\n <Message\n v-if=\"modifiedConfigs.length > 0\"\n severity=\"info\"\n pt:text=\"w-full\"\n >\n <p>\n {{ $t('serverConfig.modifiedConfigs') }}\n </p>\n <ul>\n <li v-for=\"config in modifiedConfigs\" :key=\"config.id\">\n {{ config.name }}: {{ config.initialValue }} → {{ config.value }}\n </li>\n </ul>\n <div class=\"flex justify-end gap-2\">\n <Button\n :label=\"$t('serverConfig.revertChanges')\"\n @click=\"revertChanges\"\n outlined\n />\n <Button\n :label=\"$t('serverConfig.restart')\"\n @click=\"restartApp\"\n outlined\n severity=\"danger\"\n />\n </div>\n </Message>\n <Message v-if=\"commandLineArgs\" severity=\"secondary\" pt:text=\"w-full\">\n <template #icon>\n <i-lucide:terminal class=\"text-xl font-bold\" />\n </template>\n <div class=\"flex items-center justify-between\">\n <p>{{ commandLineArgs }}</p>\n <Button\n icon=\"pi pi-clipboard\"\n @click=\"copyCommandLineArgs\"\n severity=\"secondary\"\n text\n />\n </div>\n </Message>\n </div>\n </template>\n <div\n v-for=\"([label, items], i) in Object.entries(serverConfigsByCategory)\"\n :key=\"label\"\n >\n <Divider v-if=\"i > 0\" />\n <h3>{{ formatCamelCase(label) }}</h3>\n <div\n v-for=\"item in items\"\n :key=\"item.name\"\n class=\"flex items-center mb-4\"\n >\n <FormItem\n :item=\"item\"\n v-model:formValue=\"item.value\"\n :id=\"item.id\"\n :labelClass=\"{\n 'text-highlight': item.initialValue !== item.value\n }\"\n />\n </div>\n </div>\n </PanelTemplate>\n</template>\n\n<script setup lang=\"ts\">\nimport Button from 'primevue/button'\nimport Message from 'primevue/message'\nimport Divider from 'primevue/divider'\nimport FormItem from '@/components/common/FormItem.vue'\nimport PanelTemplate from './PanelTemplate.vue'\nimport { formatCamelCase } from '@/utils/formatUtil'\nimport { useServerConfigStore } from '@/stores/serverConfigStore'\nimport { storeToRefs } from 'pinia'\nimport { electronAPI } from '@/utils/envUtil'\nimport { useSettingStore } from '@/stores/settingStore'\nimport { watch } from 'vue'\nimport { useCopyToClipboard } from '@/hooks/clipboardHooks'\n\nconst settingStore = useSettingStore()\nconst serverConfigStore = useServerConfigStore()\nconst {\n serverConfigsByCategory,\n serverConfigValues,\n launchArgs,\n commandLineArgs,\n modifiedConfigs\n} = storeToRefs(serverConfigStore)\n\nconst revertChanges = () => {\n serverConfigStore.revertChanges()\n}\n\nconst restartApp = () => {\n electronAPI().restartApp()\n}\n\nwatch(launchArgs, (newVal) => {\n settingStore.set('Comfy.Server.LaunchArgs', newVal)\n})\n\nwatch(serverConfigValues, (newVal) => {\n settingStore.set('Comfy.Server.ServerConfigValues', newVal)\n})\n\nconst { copyToClipboard } = useCopyToClipboard()\nconst copyCommandLineArgs = async () => {\n await copyToClipboard(commandLineArgs.value)\n}\n</script>\n"],"names":[],"mappings":";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAqFA,UAAM,eAAe;AACrB,UAAM,oBAAoB;AACpB,UAAA;AAAA,MACJ;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IAAA,IACE,YAAY,iBAAiB;AAEjC,UAAM,gBAAgB,6BAAM;AAC1B,wBAAkB,cAAc;AAAA,IAAA,GADZ;AAItB,UAAM,aAAa,6BAAM;AACvB,kBAAA,EAAc;IAAW,GADR;AAIb,UAAA,YAAY,CAAC,WAAW;AACf,mBAAA,IAAI,2BAA2B,MAAM;AAAA,IAAA,CACnD;AAEK,UAAA,oBAAoB,CAAC,WAAW;AACvB,mBAAA,IAAI,mCAAmC,MAAM;AAAA,IAAA,CAC3D;AAEK,UAAA,EAAE,oBAAoB;AAC5B,UAAM,sBAAsB,mCAAY;AAChC,YAAA,gBAAgB,gBAAgB,KAAK;AAAA,IAAA,GADjB;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}

79
web/assets/ServerStartView-CqRVtr1h.js generated vendored Normal file
View File

@@ -0,0 +1,79 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, aD as useI18n, r as ref, o as onMounted, g as openBlock, h as createElementBlock, A as createBaseVNode, aw as createTextVNode, a6 as toDisplayString, z as unref, j as createCommentVNode, i as createVNode, D as script, bM as BaseTerminal, P as pushScopeId, Q as popScopeId, bN as electronAPI, _ as _export_sfc } from "./index-CoOvI8ZH.js";
import { P as ProgressStatus } from "./index-BppSBmxJ.js";
const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-f5429be7"), n = n(), popScopeId(), n), "_withScopeId");
const _hoisted_1 = { class: "font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto" };
const _hoisted_2 = { class: "text-2xl font-bold" };
const _hoisted_3 = { key: 0 };
const _hoisted_4 = {
key: 0,
class: "flex items-center my-4 gap-2"
};
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "ServerStartView",
setup(__props) {
const electron = electronAPI();
const { t } = useI18n();
const status = ref(ProgressStatus.INITIAL_STATE);
const electronVersion = ref("");
let xterm;
const updateProgress = /* @__PURE__ */ __name(({ status: newStatus }) => {
status.value = newStatus;
xterm?.clear();
}, "updateProgress");
const terminalCreated = /* @__PURE__ */ __name(({ terminal, useAutoSize }, root) => {
xterm = terminal;
useAutoSize(root, true, true);
electron.onLogMessage((message) => {
terminal.write(message);
});
terminal.options.cursorBlink = false;
terminal.options.disableStdin = true;
terminal.options.cursorInactiveStyle = "block";
}, "terminalCreated");
const reinstall = /* @__PURE__ */ __name(() => electron.reinstall(), "reinstall");
const reportIssue = /* @__PURE__ */ __name(() => {
window.open("https://forum.comfy.org/c/v1-feedback/", "_blank");
}, "reportIssue");
const openLogs = /* @__PURE__ */ __name(() => electron.openLogsFolder(), "openLogs");
onMounted(async () => {
electron.sendReady();
electron.onProgressUpdate(updateProgress);
electronVersion.value = await electron.getElectronVersion();
});
return (_ctx, _cache) => {
return openBlock(), createElementBlock("div", _hoisted_1, [
createBaseVNode("h2", _hoisted_2, [
createTextVNode(toDisplayString(unref(t)(`serverStart.process.${status.value}`)) + " ", 1),
status.value === unref(ProgressStatus).ERROR ? (openBlock(), createElementBlock("span", _hoisted_3, " v" + toDisplayString(electronVersion.value), 1)) : createCommentVNode("", true)
]),
status.value === unref(ProgressStatus).ERROR ? (openBlock(), createElementBlock("div", _hoisted_4, [
createVNode(unref(script), {
icon: "pi pi-flag",
severity: "secondary",
label: unref(t)("serverStart.reportIssue"),
onClick: reportIssue
}, null, 8, ["label"]),
createVNode(unref(script), {
icon: "pi pi-file",
severity: "secondary",
label: unref(t)("serverStart.openLogs"),
onClick: openLogs
}, null, 8, ["label"]),
createVNode(unref(script), {
icon: "pi pi-refresh",
label: unref(t)("serverStart.reinstall"),
onClick: reinstall
}, null, 8, ["label"])
])) : createCommentVNode("", true),
createVNode(BaseTerminal, { onCreated: terminalCreated })
]);
};
}
});
const ServerStartView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-f5429be7"]]);
export {
ServerStartView as default
};
//# sourceMappingURL=ServerStartView-CqRVtr1h.js.map

1
web/assets/ServerStartView-CqRVtr1h.js.map generated vendored Normal file
View File

@@ -0,0 +1 @@
{"version":3,"file":"ServerStartView-CqRVtr1h.js","sources":["../../src/views/ServerStartView.vue"],"sourcesContent":["<template>\n <div\n class=\"font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto\"\n >\n <h2 class=\"text-2xl font-bold\">\n {{ t(`serverStart.process.${status}`) }}\n <span v-if=\"status === ProgressStatus.ERROR\">\n v{{ electronVersion }}\n </span>\n </h2>\n <div\n v-if=\"status === ProgressStatus.ERROR\"\n class=\"flex items-center my-4 gap-2\"\n >\n <Button\n icon=\"pi pi-flag\"\n severity=\"secondary\"\n :label=\"t('serverStart.reportIssue')\"\n @click=\"reportIssue\"\n />\n <Button\n icon=\"pi pi-file\"\n severity=\"secondary\"\n :label=\"t('serverStart.openLogs')\"\n @click=\"openLogs\"\n />\n <Button\n icon=\"pi pi-refresh\"\n :label=\"t('serverStart.reinstall')\"\n @click=\"reinstall\"\n />\n </div>\n <BaseTerminal @created=\"terminalCreated\" />\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport Button from 'primevue/button'\nimport { ref, onMounted, Ref } from 'vue'\nimport BaseTerminal from '@/components/bottomPanel/tabs/terminal/BaseTerminal.vue'\nimport { ProgressStatus } from '@comfyorg/comfyui-electron-types'\nimport { electronAPI } from '@/utils/envUtil'\nimport type { useTerminal } from '@/hooks/bottomPanelTabs/useTerminal'\nimport { Terminal } from '@xterm/xterm'\nimport { useI18n } from 'vue-i18n'\n\nconst electron = electronAPI()\nconst { t } = useI18n()\n\nconst status = ref<ProgressStatus>(ProgressStatus.INITIAL_STATE)\nconst electronVersion = ref<string>('')\nlet xterm: Terminal | undefined\n\nconst updateProgress = ({ status: newStatus }: { status: ProgressStatus }) => {\n status.value = newStatus\n xterm?.clear()\n}\n\nconst terminalCreated = (\n { terminal, useAutoSize }: ReturnType<typeof useTerminal>,\n root: Ref<HTMLElement>\n) => {\n xterm = terminal\n\n useAutoSize(root, true, true)\n electron.onLogMessage((message: string) => {\n terminal.write(message)\n })\n\n terminal.options.cursorBlink = false\n terminal.options.disableStdin = true\n terminal.options.cursorInactiveStyle = 'block'\n}\n\nconst reinstall = () => electron.reinstall()\nconst reportIssue = () => {\n window.open('https://forum.comfy.org/c/v1-feedback/', '_blank')\n}\nconst openLogs = () => electron.openLogsFolder()\n\nonMounted(async () => {\n electron.sendReady()\n electron.onProgressUpdate(updateProgress)\n electronVersion.value = await electron.getElectronVersion()\n})\n</script>\n\n<style scoped>\n:deep(.xterm-helper-textarea) {\n /* Hide this as it moves all over when uv is running */\n display: none;\n}\n</style>\n"],"names":[],"mappings":";;;;;;;;;;;;;;;AA8CA,UAAM,WAAW;AACX,UAAA,EAAE,MAAM;AAER,UAAA,SAAS,IAAoB,eAAe,aAAa;AACzD,UAAA,kBAAkB,IAAY,EAAE;AAClC,QAAA;AAEJ,UAAM,iBAAiB,wBAAC,EAAE,QAAQ,gBAA4C;AAC5E,aAAO,QAAQ;AACf,aAAO,MAAM;AAAA,IAAA,GAFQ;AAKvB,UAAM,kBAAkB,wBACtB,EAAE,UAAU,YAAA,GACZ,SACG;AACK,cAAA;AAEI,kBAAA,MAAM,MAAM,IAAI;AACnB,eAAA,aAAa,CAAC,YAAoB;AACzC,iBAAS,MAAM,OAAO;AAAA,MAAA,CACvB;AAED,eAAS,QAAQ,cAAc;AAC/B,eAAS,QAAQ,eAAe;AAChC,eAAS,QAAQ,sBAAsB;AAAA,IAAA,GAbjB;AAgBlB,UAAA,YAAY,6BAAM,SAAS,aAAf;AAClB,UAAM,cAAc,6BAAM;AACjB,aAAA,KAAK,0CAA0C,QAAQ;AAAA,IAAA,GAD5C;AAGd,UAAA,WAAW,6BAAM,SAAS,kBAAf;AAEjB,cAAU,YAAY;AACpB,eAAS,UAAU;AACnB,eAAS,iBAAiB,cAAc;AACxB,sBAAA,QAAQ,MAAM,SAAS,mBAAmB;AAAA,IAAA,CAC3D;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}

5
web/assets/ServerStartView-Djq8v91B.css generated vendored Normal file
View File

@@ -0,0 +1,5 @@
[data-v-f5429be7] .xterm-helper-textarea {
/* Hide this as it moves all over when uv is running */
display: none;
}

View File

@@ -1,102 +0,0 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, r as ref, o as onMounted, w as watch, I as onBeforeUnmount, g as openBlock, h as createElementBlock, i as createVNode, y as withCtx, A as createBaseVNode, a6 as toDisplayString, z as unref, bK as script, bL as electronAPI } from "./index-B6dYHNhg.js";
import { t, s } from "./index-B4gmhi99.js";
const _hoisted_1$1 = { class: "p-terminal rounded-none h-full w-full" };
const _hoisted_2$1 = { class: "px-4 whitespace-pre-wrap" };
const _sfc_main$1 = /* @__PURE__ */ defineComponent({
__name: "LogTerminal",
props: {
fetchLogs: { type: Function },
fetchInterval: {}
},
setup(__props) {
const props = __props;
const log = ref("");
const scrollPanelRef = ref(null);
const scrolledToBottom = ref(false);
let intervalId = 0;
onMounted(async () => {
const element = scrollPanelRef.value?.$el;
const scrollContainer = element?.querySelector(".p-scrollpanel-content");
if (scrollContainer) {
scrollContainer.addEventListener("scroll", () => {
scrolledToBottom.value = scrollContainer.scrollTop + scrollContainer.clientHeight === scrollContainer.scrollHeight;
});
}
const scrollToBottom = /* @__PURE__ */ __name(() => {
if (scrollContainer) {
scrollContainer.scrollTop = scrollContainer.scrollHeight;
}
}, "scrollToBottom");
watch(log, () => {
if (scrolledToBottom.value) {
scrollToBottom();
}
});
const fetchLogs = /* @__PURE__ */ __name(async () => {
log.value = await props.fetchLogs();
}, "fetchLogs");
await fetchLogs();
scrollToBottom();
intervalId = window.setInterval(fetchLogs, props.fetchInterval);
});
onBeforeUnmount(() => {
window.clearInterval(intervalId);
});
return (_ctx, _cache) => {
return openBlock(), createElementBlock("div", _hoisted_1$1, [
createVNode(unref(script), {
class: "h-full w-full",
ref_key: "scrollPanelRef",
ref: scrollPanelRef
}, {
default: withCtx(() => [
createBaseVNode("pre", _hoisted_2$1, toDisplayString(log.value), 1)
]),
_: 1
}, 512)
]);
};
}
});
const _hoisted_1 = { class: "font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto" };
const _hoisted_2 = { class: "text-2xl font-bold" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "ServerStartView",
setup(__props) {
const electron = electronAPI();
const status = ref(t.INITIAL_STATE);
const logs = ref([]);
const updateProgress = /* @__PURE__ */ __name(({ status: newStatus }) => {
status.value = newStatus;
logs.value = [];
}, "updateProgress");
const addLogMessage = /* @__PURE__ */ __name((message) => {
logs.value = [...logs.value, message];
}, "addLogMessage");
const fetchLogs = /* @__PURE__ */ __name(async () => {
return logs.value.join("\n");
}, "fetchLogs");
onMounted(() => {
electron.sendReady();
electron.onProgressUpdate(updateProgress);
electron.onLogMessage((message) => {
addLogMessage(message);
});
});
return (_ctx, _cache) => {
return openBlock(), createElementBlock("div", _hoisted_1, [
createBaseVNode("h2", _hoisted_2, toDisplayString(unref(s)[status.value]), 1),
createVNode(_sfc_main$1, {
"fetch-logs": fetchLogs,
"fetch-interval": 500
})
]);
};
}
});
export {
_sfc_main as default
};
//# sourceMappingURL=ServerStartView-e57oVZ6V.js.map

View File

@@ -1 +0,0 @@
{"version":3,"file":"ServerStartView-e57oVZ6V.js","sources":["../../src/components/common/LogTerminal.vue","../../src/views/ServerStartView.vue"],"sourcesContent":["<!-- A simple read-only terminal component that displays logs. -->\n<template>\n <div class=\"p-terminal rounded-none h-full w-full\">\n <ScrollPanel class=\"h-full w-full\" ref=\"scrollPanelRef\">\n <pre class=\"px-4 whitespace-pre-wrap\">{{ log }}</pre>\n </ScrollPanel>\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport ScrollPanel from 'primevue/scrollpanel'\nimport { onBeforeUnmount, onMounted, ref, watch } from 'vue'\n\nconst props = defineProps<{\n fetchLogs: () => Promise<string>\n fetchInterval: number\n}>()\n\nconst log = ref<string>('')\nconst scrollPanelRef = ref<InstanceType<typeof ScrollPanel> | null>(null)\n/**\n * Whether the user has scrolled to the bottom of the terminal.\n * This is used to prevent the terminal from scrolling to the bottom\n * when new logs are fetched.\n */\nconst scrolledToBottom = ref(false)\n\nlet intervalId: number = 0\n\nonMounted(async () => {\n const element = scrollPanelRef.value?.$el\n const scrollContainer = element?.querySelector('.p-scrollpanel-content')\n\n if (scrollContainer) {\n scrollContainer.addEventListener('scroll', () => {\n scrolledToBottom.value =\n scrollContainer.scrollTop + scrollContainer.clientHeight ===\n scrollContainer.scrollHeight\n })\n }\n\n const scrollToBottom = () => {\n if (scrollContainer) {\n scrollContainer.scrollTop = scrollContainer.scrollHeight\n }\n }\n\n watch(log, () => {\n if (scrolledToBottom.value) {\n scrollToBottom()\n }\n })\n\n const fetchLogs = async () => {\n log.value = await props.fetchLogs()\n }\n\n await fetchLogs()\n scrollToBottom()\n intervalId = window.setInterval(fetchLogs, props.fetchInterval)\n})\n\nonBeforeUnmount(() => {\n window.clearInterval(intervalId)\n})\n</script>\n","<template>\n <div\n class=\"font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto\"\n >\n <h2 class=\"text-2xl font-bold\">{{ ProgressMessages[status] }}</h2>\n <LogTerminal :fetch-logs=\"fetchLogs\" :fetch-interval=\"500\" />\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport { ref, onMounted } from 'vue'\nimport LogTerminal from '@/components/common/LogTerminal.vue'\nimport {\n ProgressStatus,\n ProgressMessages\n} from '@comfyorg/comfyui-electron-types'\nimport { electronAPI } from '@/utils/envUtil'\n\nconst electron = electronAPI()\n\nconst status = ref<ProgressStatus>(ProgressStatus.INITIAL_STATE)\nconst logs = ref<string[]>([])\n\nconst updateProgress = ({ status: newStatus }: { status: ProgressStatus }) => {\n status.value = newStatus\n logs.value = [] // Clear logs when status changes\n}\n\nconst addLogMessage = (message: string) => {\n logs.value = [...logs.value, message]\n}\n\nconst fetchLogs = async () => {\n return logs.value.join('\\n')\n}\n\nonMounted(() => {\n electron.sendReady()\n electron.onProgressUpdate(updateProgress)\n electron.onLogMessage((message: string) => {\n addLogMessage(message)\n })\n})\n</script>\n"],"names":["ProgressStatus"],"mappings":";;;;;;;;;;;;;AAaA,UAAM,QAAQ;AAKR,UAAA,MAAM,IAAY,EAAE;AACpB,UAAA,iBAAiB,IAA6C,IAAI;AAMlE,UAAA,mBAAmB,IAAI,KAAK;AAElC,QAAI,aAAqB;AAEzB,cAAU,YAAY;AACd,YAAA,UAAU,eAAe,OAAO;AAChC,YAAA,kBAAkB,SAAS,cAAc,wBAAwB;AAEvE,UAAI,iBAAiB;AACH,wBAAA,iBAAiB,UAAU,MAAM;AAC/C,2BAAiB,QACf,gBAAgB,YAAY,gBAAgB,iBAC5C,gBAAgB;AAAA,QAAA,CACnB;AAAA,MACH;AAEA,YAAM,iBAAiB,6BAAM;AAC3B,YAAI,iBAAiB;AACnB,0BAAgB,YAAY,gBAAgB;AAAA,QAC9C;AAAA,MAAA,GAHqB;AAMvB,YAAM,KAAK,MAAM;AACf,YAAI,iBAAiB,OAAO;AACX;QACjB;AAAA,MAAA,CACD;AAED,YAAM,YAAY,mCAAY;AACxB,YAAA,QAAQ,MAAM,MAAM,UAAU;AAAA,MAAA,GADlB;AAIlB,YAAM,UAAU;AACD;AACf,mBAAa,OAAO,YAAY,WAAW,MAAM,aAAa;AAAA,IAAA,CAC/D;AAED,oBAAgB,MAAM;AACpB,aAAO,cAAc,UAAU;AAAA,IAAA,CAChC;;;;;;;;;;;;;;;;;;;;;;AC9CD,UAAM,WAAW;AAEX,UAAA,SAAS,IAAoBA,EAAe,aAAa;AACzD,UAAA,OAAO,IAAc,CAAA,CAAE;AAE7B,UAAM,iBAAiB,wBAAC,EAAE,QAAQ,gBAA4C;AAC5E,aAAO,QAAQ;AACf,WAAK,QAAQ;IAAC,GAFO;AAKjB,UAAA,gBAAgB,wBAAC,YAAoB;AACzC,WAAK,QAAQ,CAAC,GAAG,KAAK,OAAO,OAAO;AAAA,IAAA,GADhB;AAItB,UAAM,YAAY,mCAAY;AACrB,aAAA,KAAK,MAAM,KAAK,IAAI;AAAA,IAAA,GADX;AAIlB,cAAU,MAAM;AACd,eAAS,UAAU;AACnB,eAAS,iBAAiB,cAAc;AAC/B,eAAA,aAAa,CAAC,YAAoB;AACzC,sBAAc,OAAO;AAAA,MAAA,CACtB;AAAA,IAAA,CACF;;;;;;;;;;;;"}

View File

@@ -1,6 +1,6 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, g as openBlock, h as createElementBlock, A as createBaseVNode, a6 as toDisplayString, i as createVNode, z as unref, D as script, P as pushScopeId, Q as popScopeId, _ as _export_sfc } from "./index-B6dYHNhg.js";
import { d as defineComponent, g as openBlock, h as createElementBlock, A as createBaseVNode, a6 as toDisplayString, i as createVNode, z as unref, D as script, P as pushScopeId, Q as popScopeId, _ as _export_sfc } from "./index-CoOvI8ZH.js";
const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-12b8b11b"), n = n(), popScopeId(), n), "_withScopeId");
const _hoisted_1 = { class: "font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto" };
const _hoisted_2 = { class: "flex flex-col items-center justify-center gap-8 p-8" };
@@ -30,4 +30,4 @@ const WelcomeView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-
export {
WelcomeView as default
};
//# sourceMappingURL=WelcomeView-DT4bj-QV.js.map
//# sourceMappingURL=WelcomeView-C4D1cggT.js.map

View File

@@ -1 +1 @@
{"version":3,"file":"WelcomeView-DT4bj-QV.js","sources":[],"sourcesContent":[],"names":[],"mappings":";;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}
{"version":3,"file":"WelcomeView-C4D1cggT.js","sources":[],"sourcesContent":[],"names":[],"mappings":";;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}

4598
web/assets/index-B1vRdV2i.js generated vendored

File diff suppressed because it is too large Load Diff

1
web/assets/index-B1vRdV2i.js.map generated vendored

File diff suppressed because one or more lines are too long

62
web/assets/index-B4gmhi99.js generated vendored
View File

@@ -1,62 +0,0 @@
const o = {
LOADING_PROGRESS: "loading-progress",
IS_PACKAGED: "is-packaged",
RENDERER_READY: "renderer-ready",
RESTART_APP: "restart-app",
REINSTALL: "reinstall",
LOG_MESSAGE: "log-message",
OPEN_DIALOG: "open-dialog",
DOWNLOAD_PROGRESS: "download-progress",
START_DOWNLOAD: "start-download",
PAUSE_DOWNLOAD: "pause-download",
RESUME_DOWNLOAD: "resume-download",
CANCEL_DOWNLOAD: "cancel-download",
DELETE_MODEL: "delete-model",
GET_ALL_DOWNLOADS: "get-all-downloads",
GET_ELECTRON_VERSION: "get-electron-version",
SEND_ERROR_TO_SENTRY: "send-error-to-sentry",
GET_BASE_PATH: "get-base-path",
GET_MODEL_CONFIG_PATH: "get-model-config-path",
OPEN_PATH: "open-path",
OPEN_LOGS_PATH: "open-logs-path",
OPEN_DEV_TOOLS: "open-dev-tools",
IS_FIRST_TIME_SETUP: "is-first-time-setup",
GET_SYSTEM_PATHS: "get-system-paths",
VALIDATE_INSTALL_PATH: "validate-install-path",
VALIDATE_COMFYUI_SOURCE: "validate-comfyui-source",
SHOW_DIRECTORY_PICKER: "show-directory-picker",
INSTALL_COMFYUI: "install-comfyui"
};
var t = /* @__PURE__ */ ((e) => (e.INITIAL_STATE = "initial-state", e.PYTHON_SETUP = "python-setup", e.STARTING_SERVER = "starting-server", e.READY = "ready", e.ERROR = "error", e.ERROR_INSTALL_PATH = "error-install-path", e))(t || {});
const s = {
"initial-state": "Loading...",
"python-setup": "Setting up Python Environment...",
"starting-server": "Starting ComfyUI server...",
ready: "Finishing...",
error: "Was not able to start ComfyUI. Please check the logs for more details. You can open it from the Help menu. Please report issues to: https://forum.comfy.org",
"error-install-path": "Installation path does not exist. Please reset the installation location."
}, a = "electronAPI", n = "https://942cadba58d247c9cab96f45221aa813@o4507954455314432.ingest.us.sentry.io/4508007940685824", r = [
{
id: "user_files",
label: "User Files",
description: "Settings and user-created workflows"
},
{
id: "models",
label: "Models",
description: "Reference model files from existing ComfyUI installations. (No copy)"
}
// TODO: Decide whether we want to auto-migrate custom nodes, and install their dependencies.
// huchenlei: This is a very essential thing for migration experience.
// {
// id: 'custom_nodes',
// label: 'Custom Nodes',
// description: 'Reference custom node files from existing ComfyUI installations. (No copy)',
// },
];
export {
r,
s,
t
};
//# sourceMappingURL=index-B4gmhi99.js.map

1
web/assets/index-B4gmhi99.js.map generated vendored
View File

@@ -1 +0,0 @@
{"version":3,"file":"index-B4gmhi99.js","sources":["../../node_modules/@comfyorg/comfyui-electron-types/index.mjs"],"sourcesContent":["const o = {\n LOADING_PROGRESS: \"loading-progress\",\n IS_PACKAGED: \"is-packaged\",\n RENDERER_READY: \"renderer-ready\",\n RESTART_APP: \"restart-app\",\n REINSTALL: \"reinstall\",\n LOG_MESSAGE: \"log-message\",\n OPEN_DIALOG: \"open-dialog\",\n DOWNLOAD_PROGRESS: \"download-progress\",\n START_DOWNLOAD: \"start-download\",\n PAUSE_DOWNLOAD: \"pause-download\",\n RESUME_DOWNLOAD: \"resume-download\",\n CANCEL_DOWNLOAD: \"cancel-download\",\n DELETE_MODEL: \"delete-model\",\n GET_ALL_DOWNLOADS: \"get-all-downloads\",\n GET_ELECTRON_VERSION: \"get-electron-version\",\n SEND_ERROR_TO_SENTRY: \"send-error-to-sentry\",\n GET_BASE_PATH: \"get-base-path\",\n GET_MODEL_CONFIG_PATH: \"get-model-config-path\",\n OPEN_PATH: \"open-path\",\n OPEN_LOGS_PATH: \"open-logs-path\",\n OPEN_DEV_TOOLS: \"open-dev-tools\",\n IS_FIRST_TIME_SETUP: \"is-first-time-setup\",\n GET_SYSTEM_PATHS: \"get-system-paths\",\n VALIDATE_INSTALL_PATH: \"validate-install-path\",\n VALIDATE_COMFYUI_SOURCE: \"validate-comfyui-source\",\n SHOW_DIRECTORY_PICKER: \"show-directory-picker\",\n INSTALL_COMFYUI: \"install-comfyui\"\n};\nvar t = /* @__PURE__ */ ((e) => (e.INITIAL_STATE = \"initial-state\", e.PYTHON_SETUP = \"python-setup\", e.STARTING_SERVER = \"starting-server\", e.READY = \"ready\", e.ERROR = \"error\", e.ERROR_INSTALL_PATH = \"error-install-path\", e))(t || {});\nconst s = {\n \"initial-state\": \"Loading...\",\n \"python-setup\": \"Setting up Python Environment...\",\n \"starting-server\": \"Starting ComfyUI server...\",\n ready: \"Finishing...\",\n error: \"Was not able to start ComfyUI. Please check the logs for more details. You can open it from the Help menu. Please report issues to: https://forum.comfy.org\",\n \"error-install-path\": \"Installation path does not exist. Please reset the installation location.\"\n}, a = \"electronAPI\", n = \"https://942cadba58d247c9cab96f45221aa813@o4507954455314432.ingest.us.sentry.io/4508007940685824\", r = [\n {\n id: \"user_files\",\n label: \"User Files\",\n description: \"Settings and user-created workflows\"\n },\n {\n id: \"models\",\n label: \"Models\",\n description: \"Reference model files from existing ComfyUI installations. (No copy)\"\n }\n // TODO: Decide whether we want to auto-migrate custom nodes, and install their dependencies.\n // huchenlei: This is a very essential thing for migration experience.\n // {\n // id: 'custom_nodes',\n // label: 'Custom Nodes',\n // description: 'Reference custom node files from existing ComfyUI installations. (No copy)',\n // },\n];\nexport {\n a as ELECTRON_BRIDGE_API,\n o as IPC_CHANNELS,\n r as MigrationItems,\n s as ProgressMessages,\n t as ProgressStatus,\n n as SENTRY_URL_ENDPOINT\n};\n"],"names":[],"mappings":"AAAA,MAAM,IAAI;AAAA,EACR,kBAAkB;AAAA,EAClB,aAAa;AAAA,EACb,gBAAgB;AAAA,EAChB,aAAa;AAAA,EACb,WAAW;AAAA,EACX,aAAa;AAAA,EACb,aAAa;AAAA,EACb,mBAAmB;AAAA,EACnB,gBAAgB;AAAA,EAChB,gBAAgB;AAAA,EAChB,iBAAiB;AAAA,EACjB,iBAAiB;AAAA,EACjB,cAAc;AAAA,EACd,mBAAmB;AAAA,EACnB,sBAAsB;AAAA,EACtB,sBAAsB;AAAA,EACtB,eAAe;AAAA,EACf,uBAAuB;AAAA,EACvB,WAAW;AAAA,EACX,gBAAgB;AAAA,EAChB,gBAAgB;AAAA,EAChB,qBAAqB;AAAA,EACrB,kBAAkB;AAAA,EAClB,uBAAuB;AAAA,EACvB,yBAAyB;AAAA,EACzB,uBAAuB;AAAA,EACvB,iBAAiB;AACnB;AACG,IAAC,IAAqB,kBAAC,OAAO,EAAE,gBAAgB,iBAAiB,EAAE,eAAe,gBAAgB,EAAE,kBAAkB,mBAAmB,EAAE,QAAQ,SAAS,EAAE,QAAQ,SAAS,EAAE,qBAAqB,sBAAsB,IAAI,KAAK,CAAA,CAAE;AACrO,MAAC,IAAI;AAAA,EACR,iBAAiB;AAAA,EACjB,gBAAgB;AAAA,EAChB,mBAAmB;AAAA,EACnB,OAAO;AAAA,EACP,OAAO;AAAA,EACP,sBAAsB;AACxB,GAAG,IAAI,eAAe,IAAI,mGAAmG,IAAI;AAAA,EAC/H;AAAA,IACE,IAAI;AAAA,IACJ,OAAO;AAAA,IACP,aAAa;AAAA,EACd;AAAA,EACD;AAAA,IACE,IAAI;AAAA,IACJ,OAAO;AAAA,IACP,aAAa;AAAA,EACd;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAQH;","x_google_ignoreList":[0]}

1
web/assets/index-B6dYHNhg.js.map generated vendored

File diff suppressed because one or more lines are too long

52310
web/assets/index-Ba7IybyO.js generated vendored Normal file

File diff suppressed because one or more lines are too long

1
web/assets/index-Ba7IybyO.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

106
web/assets/index-BppSBmxJ.js generated vendored Normal file
View File

@@ -0,0 +1,106 @@
const IPC_CHANNELS = {
LOADING_PROGRESS: "loading-progress",
IS_PACKAGED: "is-packaged",
RENDERER_READY: "renderer-ready",
RESTART_APP: "restart-app",
REINSTALL: "reinstall",
LOG_MESSAGE: "log-message",
OPEN_DIALOG: "open-dialog",
DOWNLOAD_PROGRESS: "download-progress",
START_DOWNLOAD: "start-download",
PAUSE_DOWNLOAD: "pause-download",
RESUME_DOWNLOAD: "resume-download",
CANCEL_DOWNLOAD: "cancel-download",
DELETE_MODEL: "delete-model",
GET_ALL_DOWNLOADS: "get-all-downloads",
GET_ELECTRON_VERSION: "get-electron-version",
SEND_ERROR_TO_SENTRY: "send-error-to-sentry",
GET_BASE_PATH: "get-base-path",
GET_MODEL_CONFIG_PATH: "get-model-config-path",
OPEN_PATH: "open-path",
OPEN_LOGS_PATH: "open-logs-path",
OPEN_DEV_TOOLS: "open-dev-tools",
TERMINAL_WRITE: "execute-terminal-command",
TERMINAL_RESIZE: "resize-terminal",
TERMINAL_RESTORE: "restore-terminal",
TERMINAL_ON_OUTPUT: "terminal-output",
IS_FIRST_TIME_SETUP: "is-first-time-setup",
GET_SYSTEM_PATHS: "get-system-paths",
VALIDATE_INSTALL_PATH: "validate-install-path",
VALIDATE_COMFYUI_SOURCE: "validate-comfyui-source",
SHOW_DIRECTORY_PICKER: "show-directory-picker",
INSTALL_COMFYUI: "install-comfyui"
};
var ProgressStatus = /* @__PURE__ */ ((ProgressStatus2) => {
ProgressStatus2["INITIAL_STATE"] = "initial-state";
ProgressStatus2["PYTHON_SETUP"] = "python-setup";
ProgressStatus2["STARTING_SERVER"] = "starting-server";
ProgressStatus2["READY"] = "ready";
ProgressStatus2["ERROR"] = "error";
return ProgressStatus2;
})(ProgressStatus || {});
const ProgressMessages = {
[
"initial-state"
/* INITIAL_STATE */
]: "Loading...",
[
"python-setup"
/* PYTHON_SETUP */
]: "Setting up Python Environment...",
[
"starting-server"
/* STARTING_SERVER */
]: "Starting ComfyUI server...",
[
"ready"
/* READY */
]: "Finishing...",
[
"error"
/* ERROR */
]: "Was not able to start ComfyUI. Please check the logs for more details. You can open it from the Help menu. Please report issues to: https://forum.comfy.org"
};
const ELECTRON_BRIDGE_API = "electronAPI";
const SENTRY_URL_ENDPOINT = "https://942cadba58d247c9cab96f45221aa813@o4507954455314432.ingest.us.sentry.io/4508007940685824";
const MigrationItems = [
{
id: "user_files",
label: "User Files",
description: "Settings and user-created workflows"
},
{
id: "models",
label: "Models",
description: "Reference model files from existing ComfyUI installations. (No copy)"
}
// TODO: Decide whether we want to auto-migrate custom nodes, and install their dependencies.
// huchenlei: This is a very essential thing for migration experience.
// {
// id: 'custom_nodes',
// label: 'Custom Nodes',
// description: 'Reference custom node files from existing ComfyUI installations. (No copy)',
// },
];
const DEFAULT_SERVER_ARGS = {
/** The host to use for the ComfyUI server. */
host: "127.0.0.1",
/** The port to use for the ComfyUI server. */
port: 8e3,
// Extra arguments to pass to the ComfyUI server.
extraServerArgs: {}
};
var DownloadStatus = /* @__PURE__ */ ((DownloadStatus2) => {
DownloadStatus2["PENDING"] = "pending";
DownloadStatus2["IN_PROGRESS"] = "in_progress";
DownloadStatus2["COMPLETED"] = "completed";
DownloadStatus2["PAUSED"] = "paused";
DownloadStatus2["ERROR"] = "error";
DownloadStatus2["CANCELLED"] = "cancelled";
return DownloadStatus2;
})(DownloadStatus || {});
export {
MigrationItems as M,
ProgressStatus as P
};
//# sourceMappingURL=index-BppSBmxJ.js.map

1
web/assets/index-BppSBmxJ.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

1
web/assets/index-CoOvI8ZH.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

View File

@@ -1,6 +1,6 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { c7 as script$2, A as createBaseVNode, g as openBlock, h as createElementBlock, m as mergeProps } from "./index-B6dYHNhg.js";
import { cb as script$2, A as createBaseVNode, g as openBlock, h as createElementBlock, m as mergeProps } from "./index-CoOvI8ZH.js";
var script$1 = {
name: "BarsIcon",
"extends": script$2
@@ -47,4 +47,4 @@ export {
script as a,
script$1 as s
};
//# sourceMappingURL=index-MX9DEi8Q.js.map
//# sourceMappingURL=index-D4DWQPPQ.js.map

View File

@@ -1 +1 @@
{"version":3,"file":"index-MX9DEi8Q.js","sources":["../../node_modules/@primevue/icons/bars/index.mjs","../../node_modules/@primevue/icons/plus/index.mjs"],"sourcesContent":["import BaseIcon from '@primevue/icons/baseicon';\nimport { openBlock, createElementBlock, mergeProps, createElementVNode } from 'vue';\n\nvar script = {\n name: 'BarsIcon',\n \"extends\": BaseIcon\n};\n\nvar _hoisted_1 = /*#__PURE__*/createElementVNode(\"path\", {\n \"fill-rule\": \"evenodd\",\n \"clip-rule\": \"evenodd\",\n d: \"M13.3226 3.6129H0.677419C0.497757 3.6129 0.325452 3.54152 0.198411 3.41448C0.0713707 3.28744 0 3.11514 0 2.93548C0 2.75581 0.0713707 2.58351 0.198411 2.45647C0.325452 2.32943 0.497757 2.25806 0.677419 2.25806H13.3226C13.5022 2.25806 13.6745 2.32943 13.8016 2.45647C13.9286 2.58351 14 2.75581 14 2.93548C14 3.11514 13.9286 3.28744 13.8016 3.41448C13.6745 3.54152 13.5022 3.6129 13.3226 3.6129ZM13.3226 7.67741H0.677419C0.497757 7.67741 0.325452 7.60604 0.198411 7.479C0.0713707 7.35196 0 7.17965 0 6.99999C0 6.82033 0.0713707 6.64802 0.198411 6.52098C0.325452 6.39394 0.497757 6.32257 0.677419 6.32257H13.3226C13.5022 6.32257 13.6745 6.39394 13.8016 6.52098C13.9286 6.64802 14 6.82033 14 6.99999C14 7.17965 13.9286 7.35196 13.8016 7.479C13.6745 7.60604 13.5022 7.67741 13.3226 7.67741ZM0.677419 11.7419H13.3226C13.5022 11.7419 13.6745 11.6706 13.8016 11.5435C13.9286 11.4165 14 11.2442 14 11.0645C14 10.8848 13.9286 10.7125 13.8016 10.5855C13.6745 10.4585 13.5022 10.3871 13.3226 10.3871H0.677419C0.497757 10.3871 0.325452 10.4585 0.198411 10.5855C0.0713707 10.7125 0 10.8848 0 11.0645C0 11.2442 0.0713707 11.4165 0.198411 11.5435C0.325452 11.6706 0.497757 11.7419 0.677419 11.7419Z\",\n fill: \"currentColor\"\n}, null, -1);\nvar _hoisted_2 = [_hoisted_1];\nfunction render(_ctx, _cache, $props, $setup, $data, $options) {\n return openBlock(), createElementBlock(\"svg\", mergeProps({\n width: \"14\",\n height: \"14\",\n viewBox: \"0 0 14 14\",\n fill: \"none\",\n xmlns: \"http://www.w3.org/2000/svg\"\n }, _ctx.pti()), _hoisted_2, 16);\n}\n\nscript.render = render;\n\nexport { script as default };\n//# sourceMappingURL=index.mjs.map\n","import BaseIcon from '@primevue/icons/baseicon';\nimport { openBlock, createElementBlock, mergeProps, createElementVNode } from 'vue';\n\nvar script = {\n name: 'PlusIcon',\n \"extends\": BaseIcon\n};\n\nvar _hoisted_1 = /*#__PURE__*/createElementVNode(\"path\", {\n d: \"M7.67742 6.32258V0.677419C7.67742 0.497757 7.60605 0.325452 7.47901 0.198411C7.35197 0.0713707 7.17966 0 7 0C6.82034 0 6.64803 0.0713707 6.52099 0.198411C6.39395 0.325452 6.32258 0.497757 6.32258 0.677419V6.32258H0.677419C0.497757 6.32258 0.325452 6.39395 0.198411 6.52099C0.0713707 6.64803 0 6.82034 0 7C0 7.17966 0.0713707 7.35197 0.198411 7.47901C0.325452 7.60605 0.497757 7.67742 0.677419 7.67742H6.32258V13.3226C6.32492 13.5015 6.39704 13.6725 6.52358 13.799C6.65012 13.9255 6.82106 13.9977 7 14C7.17966 14 7.35197 13.9286 7.47901 13.8016C7.60605 13.6745 7.67742 13.5022 7.67742 13.3226V7.67742H13.3226C13.5022 7.67742 13.6745 7.60605 13.8016 7.47901C13.9286 7.35197 14 7.17966 14 7C13.9977 6.82106 13.9255 6.65012 13.799 6.52358C13.6725 6.39704 13.5015 6.32492 13.3226 6.32258H7.67742Z\",\n fill: \"currentColor\"\n}, null, -1);\nvar _hoisted_2 = [_hoisted_1];\nfunction render(_ctx, _cache, $props, $setup, $data, $options) {\n return openBlock(), createElementBlock(\"svg\", mergeProps({\n width: \"14\",\n height: \"14\",\n viewBox: \"0 0 14 14\",\n fill: \"none\",\n xmlns: \"http://www.w3.org/2000/svg\"\n }, _ctx.pti()), _hoisted_2, 16);\n}\n\nscript.render = render;\n\nexport { script as default };\n//# sourceMappingURL=index.mjs.map\n"],"names":["script","BaseIcon","_hoisted_1","createElementVNode","_hoisted_2","render"],"mappings":";;;AAGG,IAACA,WAAS;AAAA,EACX,MAAM;AAAA,EACN,WAAWC;AACb;AAEA,IAAIC,eAA0BC,gCAAmB,QAAQ;AAAA,EACvD,aAAa;AAAA,EACb,aAAa;AAAA,EACb,GAAG;AAAA,EACH,MAAM;AACR,GAAG,MAAM,EAAE;AACX,IAAIC,eAAa,CAACF,YAAU;AAC5B,SAASG,SAAO,MAAM,QAAQ,QAAQ,QAAQ,OAAO,UAAU;AAC7D,SAAO,UAAW,GAAE,mBAAmB,OAAO,WAAW;AAAA,IACvD,OAAO;AAAA,IACP,QAAQ;AAAA,IACR,SAAS;AAAA,IACT,MAAM;AAAA,IACN,OAAO;AAAA,EACR,GAAE,KAAK,IAAG,CAAE,GAAGD,cAAY,EAAE;AAChC;AARSC;AAUTL,SAAO,SAASK;ACtBb,IAAC,SAAS;AAAA,EACX,MAAM;AAAA,EACN,WAAWJ;AACb;AAEA,IAAI,aAA0BE,gCAAmB,QAAQ;AAAA,EACvD,GAAG;AAAA,EACH,MAAM;AACR,GAAG,MAAM,EAAE;AACX,IAAI,aAAa,CAAC,UAAU;AAC5B,SAAS,OAAO,MAAM,QAAQ,QAAQ,QAAQ,OAAO,UAAU;AAC7D,SAAO,UAAW,GAAE,mBAAmB,OAAO,WAAW;AAAA,IACvD,OAAO;AAAA,IACP,QAAQ;AAAA,IACR,SAAS;AAAA,IACT,MAAM;AAAA,IACN,OAAO;AAAA,EACR,GAAE,KAAK,IAAG,CAAE,GAAG,YAAY,EAAE;AAChC;AARS;AAUT,OAAO,SAAS;","x_google_ignoreList":[0,1]}
{"version":3,"file":"index-D4DWQPPQ.js","sources":["../../node_modules/@primevue/icons/bars/index.mjs","../../node_modules/@primevue/icons/plus/index.mjs"],"sourcesContent":["import BaseIcon from '@primevue/icons/baseicon';\nimport { openBlock, createElementBlock, mergeProps, createElementVNode } from 'vue';\n\nvar script = {\n name: 'BarsIcon',\n \"extends\": BaseIcon\n};\n\nvar _hoisted_1 = /*#__PURE__*/createElementVNode(\"path\", {\n \"fill-rule\": \"evenodd\",\n \"clip-rule\": \"evenodd\",\n d: \"M13.3226 3.6129H0.677419C0.497757 3.6129 0.325452 3.54152 0.198411 3.41448C0.0713707 3.28744 0 3.11514 0 2.93548C0 2.75581 0.0713707 2.58351 0.198411 2.45647C0.325452 2.32943 0.497757 2.25806 0.677419 2.25806H13.3226C13.5022 2.25806 13.6745 2.32943 13.8016 2.45647C13.9286 2.58351 14 2.75581 14 2.93548C14 3.11514 13.9286 3.28744 13.8016 3.41448C13.6745 3.54152 13.5022 3.6129 13.3226 3.6129ZM13.3226 7.67741H0.677419C0.497757 7.67741 0.325452 7.60604 0.198411 7.479C0.0713707 7.35196 0 7.17965 0 6.99999C0 6.82033 0.0713707 6.64802 0.198411 6.52098C0.325452 6.39394 0.497757 6.32257 0.677419 6.32257H13.3226C13.5022 6.32257 13.6745 6.39394 13.8016 6.52098C13.9286 6.64802 14 6.82033 14 6.99999C14 7.17965 13.9286 7.35196 13.8016 7.479C13.6745 7.60604 13.5022 7.67741 13.3226 7.67741ZM0.677419 11.7419H13.3226C13.5022 11.7419 13.6745 11.6706 13.8016 11.5435C13.9286 11.4165 14 11.2442 14 11.0645C14 10.8848 13.9286 10.7125 13.8016 10.5855C13.6745 10.4585 13.5022 10.3871 13.3226 10.3871H0.677419C0.497757 10.3871 0.325452 10.4585 0.198411 10.5855C0.0713707 10.7125 0 10.8848 0 11.0645C0 11.2442 0.0713707 11.4165 0.198411 11.5435C0.325452 11.6706 0.497757 11.7419 0.677419 11.7419Z\",\n fill: \"currentColor\"\n}, null, -1);\nvar _hoisted_2 = [_hoisted_1];\nfunction render(_ctx, _cache, $props, $setup, $data, $options) {\n return openBlock(), createElementBlock(\"svg\", mergeProps({\n width: \"14\",\n height: \"14\",\n viewBox: \"0 0 14 14\",\n fill: \"none\",\n xmlns: \"http://www.w3.org/2000/svg\"\n }, _ctx.pti()), _hoisted_2, 16);\n}\n\nscript.render = render;\n\nexport { script as default };\n//# sourceMappingURL=index.mjs.map\n","import BaseIcon from '@primevue/icons/baseicon';\nimport { openBlock, createElementBlock, mergeProps, createElementVNode } from 'vue';\n\nvar script = {\n name: 'PlusIcon',\n \"extends\": BaseIcon\n};\n\nvar _hoisted_1 = /*#__PURE__*/createElementVNode(\"path\", {\n d: \"M7.67742 6.32258V0.677419C7.67742 0.497757 7.60605 0.325452 7.47901 0.198411C7.35197 0.0713707 7.17966 0 7 0C6.82034 0 6.64803 0.0713707 6.52099 0.198411C6.39395 0.325452 6.32258 0.497757 6.32258 0.677419V6.32258H0.677419C0.497757 6.32258 0.325452 6.39395 0.198411 6.52099C0.0713707 6.64803 0 6.82034 0 7C0 7.17966 0.0713707 7.35197 0.198411 7.47901C0.325452 7.60605 0.497757 7.67742 0.677419 7.67742H6.32258V13.3226C6.32492 13.5015 6.39704 13.6725 6.52358 13.799C6.65012 13.9255 6.82106 13.9977 7 14C7.17966 14 7.35197 13.9286 7.47901 13.8016C7.60605 13.6745 7.67742 13.5022 7.67742 13.3226V7.67742H13.3226C13.5022 7.67742 13.6745 7.60605 13.8016 7.47901C13.9286 7.35197 14 7.17966 14 7C13.9977 6.82106 13.9255 6.65012 13.799 6.52358C13.6725 6.39704 13.5015 6.32492 13.3226 6.32258H7.67742Z\",\n fill: \"currentColor\"\n}, null, -1);\nvar _hoisted_2 = [_hoisted_1];\nfunction render(_ctx, _cache, $props, $setup, $data, $options) {\n return openBlock(), createElementBlock(\"svg\", mergeProps({\n width: \"14\",\n height: \"14\",\n viewBox: \"0 0 14 14\",\n fill: \"none\",\n xmlns: \"http://www.w3.org/2000/svg\"\n }, _ctx.pti()), _hoisted_2, 16);\n}\n\nscript.render = render;\n\nexport { script as default };\n//# sourceMappingURL=index.mjs.map\n"],"names":["script","BaseIcon","_hoisted_1","createElementVNode","_hoisted_2","render"],"mappings":";;;AAGG,IAACA,WAAS;AAAA,EACX,MAAM;AAAA,EACN,WAAWC;AACb;AAEA,IAAIC,eAA0BC,gCAAmB,QAAQ;AAAA,EACvD,aAAa;AAAA,EACb,aAAa;AAAA,EACb,GAAG;AAAA,EACH,MAAM;AACR,GAAG,MAAM,EAAE;AACX,IAAIC,eAAa,CAACF,YAAU;AAC5B,SAASG,SAAO,MAAM,QAAQ,QAAQ,QAAQ,OAAO,UAAU;AAC7D,SAAO,UAAW,GAAE,mBAAmB,OAAO,WAAW;AAAA,IACvD,OAAO;AAAA,IACP,QAAQ;AAAA,IACR,SAAS;AAAA,IACT,MAAM;AAAA,IACN,OAAO;AAAA,EACR,GAAE,KAAK,IAAG,CAAE,GAAGD,cAAY,EAAE;AAChC;AARSC;AAUTL,SAAO,SAASK;ACtBb,IAAC,SAAS;AAAA,EACX,MAAM;AAAA,EACN,WAAWJ;AACb;AAEA,IAAI,aAA0BE,gCAAmB,QAAQ;AAAA,EACvD,GAAG;AAAA,EACH,MAAM;AACR,GAAG,MAAM,EAAE;AACX,IAAI,aAAa,CAAC,UAAU;AAC5B,SAAS,OAAO,MAAM,QAAQ,QAAQ,QAAQ,OAAO,UAAU;AAC7D,SAAO,UAAW,GAAE,mBAAmB,OAAO,WAAW;AAAA,IACvD,OAAO;AAAA,IACP,QAAQ;AAAA,IACR,SAAS;AAAA,IACT,MAAM;AAAA,IACN,OAAO;AAAA,EACR,GAAE,KAAK,IAAG,CAAE,GAAG,YAAY,EAAE;AAChC;AARS;AAUT,OAAO,SAAS;","x_google_ignoreList":[0,1]}

View File

@@ -1,7 +1,7 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { c7 as script$s, A as createBaseVNode, g as openBlock, h as createElementBlock, m as mergeProps, B as BaseStyle, R as script$t, a6 as toDisplayString, a1 as Ripple, t as resolveDirective, v as withDirectives, x as createBlock, J as resolveDynamicComponent, c8 as script$u, l as resolveComponent, C as normalizeClass, av as createSlots, y as withCtx, bw as script$v, bm as script$w, N as Fragment, O as renderList, aw as createTextVNode, bc as setAttribute, ad as UniqueComponentId, ba as normalizeProps, p as renderSlot, j as createCommentVNode, a4 as equals, b6 as script$x, bS as script$y, c9 as getFirstFocusableElement, ag as OverlayEventBus, a8 as getVNodeProp, af as resolveFieldData, ca as invokeElementMethod, a2 as getAttribute, cb as getNextElementSibling, Y as getOuterWidth, cc as getPreviousElementSibling, D as script$z, ar as script$A, a0 as script$B, b9 as script$D, ac as isNotEmpty, bi as withModifiers, W as getOuterHeight, cd as _default, ae as ZIndex, a3 as focus, ai as addStyle, ak as absolutePosition, al as ConnectedOverlayScrollHandler, am as isTouchDevice, ce as FilterOperator, aq as script$E, cf as FocusTrap, i as createVNode, au as Transition, cg as withKeys, ch as getIndex, s as script$G, ci as isClickable, cj as clearSelection, ck as localeComparator, cl as sort, cm as FilterService, c3 as FilterMatchMode, V as findSingle, bM as findIndexInList, bN as find, cn as exportCSV, X as getOffset, co as getHiddenElementOuterWidth, cp as getHiddenElementOuterHeight, cq as reorderArray, cr as getWindowScrollTop, cs as removeClass, ct as addClass, ah as isEmpty, ap as script$H, as as script$I } from "./index-B6dYHNhg.js";
import { s as script$C, a as script$F } from "./index-MX9DEi8Q.js";
import { cb as script$s, A as createBaseVNode, g as openBlock, h as createElementBlock, m as mergeProps, B as BaseStyle, R as script$t, a6 as toDisplayString, a1 as Ripple, t as resolveDirective, v as withDirectives, x as createBlock, J as resolveDynamicComponent, cc as script$u, l as resolveComponent, C as normalizeClass, av as createSlots, y as withCtx, by as script$v, bo as script$w, N as Fragment, O as renderList, aw as createTextVNode, be as setAttribute, ad as UniqueComponentId, bc as normalizeProps, p as renderSlot, j as createCommentVNode, a4 as equals, b8 as script$x, bU as script$y, cd as getFirstFocusableElement, ag as OverlayEventBus, a8 as getVNodeProp, af as resolveFieldData, ce as invokeElementMethod, a2 as getAttribute, cf as getNextElementSibling, Y as getOuterWidth, cg as getPreviousElementSibling, D as script$z, ar as script$A, a0 as script$B, bb as script$D, ac as isNotEmpty, bk as withModifiers, W as getOuterHeight, ch as _default, ae as ZIndex, a3 as focus, ai as addStyle, ak as absolutePosition, al as ConnectedOverlayScrollHandler, am as isTouchDevice, ci as FilterOperator, aq as script$E, cj as FocusTrap, i as createVNode, au as Transition, ck as withKeys, cl as getIndex, s as script$G, cm as isClickable, cn as clearSelection, co as localeComparator, cp as sort, cq as FilterService, c6 as FilterMatchMode, V as findSingle, bO as findIndexInList, bP as find, cr as exportCSV, X as getOffset, cs as getHiddenElementOuterWidth, ct as getHiddenElementOuterHeight, cu as reorderArray, cv as getWindowScrollTop, cw as removeClass, cx as addClass, ah as isEmpty, ap as script$H, as as script$I } from "./index-CoOvI8ZH.js";
import { s as script$C, a as script$F } from "./index-D4DWQPPQ.js";
var script$r = {
name: "ArrowDownIcon",
"extends": script$s
@@ -8782,4 +8782,4 @@ export {
script$d as a,
script as s
};
//# sourceMappingURL=index-CjwCGacA.js.map
//# sourceMappingURL=index-DK6Kev7f.js.map

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

90
web/assets/serverConfigStore-cctR8PGG.js generated vendored Normal file
View File

@@ -0,0 +1,90 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { cB as defineStore, r as ref, q as computed } from "./index-CoOvI8ZH.js";
const useServerConfigStore = defineStore("serverConfig", () => {
const serverConfigById = ref({});
const serverConfigs = computed(() => {
return Object.values(serverConfigById.value);
});
const modifiedConfigs = computed(
() => {
return serverConfigs.value.filter((config) => {
return config.initialValue !== config.value;
});
}
);
const revertChanges = /* @__PURE__ */ __name(() => {
for (const config of modifiedConfigs.value) {
config.value = config.initialValue;
}
}, "revertChanges");
const serverConfigsByCategory = computed(() => {
return serverConfigs.value.reduce(
(acc, config) => {
const category = config.category?.[0] ?? "General";
acc[category] = acc[category] || [];
acc[category].push(config);
return acc;
},
{}
);
});
const serverConfigValues = computed(() => {
return Object.fromEntries(
serverConfigs.value.map((config) => {
return [
config.id,
config.value === config.defaultValue || config.value === null || config.value === void 0 ? void 0 : config.value
];
})
);
});
const launchArgs = computed(() => {
const args = Object.assign(
{},
...serverConfigs.value.map((config) => {
if (config.value === config.defaultValue || config.value === null || config.value === void 0) {
return {};
}
return config.getValue ? config.getValue(config.value) : { [config.id]: config.value };
})
);
return Object.fromEntries(
Object.entries(args).map(([key, value]) => {
if (value === true) {
return [key, ""];
}
return [key, value.toString()];
})
);
});
const commandLineArgs = computed(() => {
return Object.entries(launchArgs.value).map(([key, value]) => [`--${key}`, value]).flat().filter((arg) => arg !== "").join(" ");
});
function loadServerConfig(configs, values) {
for (const config of configs) {
const value = values[config.id] ?? config.defaultValue;
serverConfigById.value[config.id] = {
...config,
value,
initialValue: value
};
}
}
__name(loadServerConfig, "loadServerConfig");
return {
serverConfigById,
serverConfigs,
modifiedConfigs,
serverConfigsByCategory,
serverConfigValues,
launchArgs,
commandLineArgs,
revertChanges,
loadServerConfig
};
});
export {
useServerConfigStore as u
};
//# sourceMappingURL=serverConfigStore-cctR8PGG.js.map

1
web/assets/serverConfigStore-cctR8PGG.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

View File

@@ -1,6 +1,6 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { bH as api, bW as $el } from "./index-B6dYHNhg.js";
import { aZ as api, bY as $el } from "./index-CoOvI8ZH.js";
function createSpinner() {
const div = document.createElement("div");
div.innerHTML = `<div class="lds-ring"><div></div><div></div><div></div><div></div></div>`;
@@ -126,4 +126,4 @@ window.comfyAPI.userSelection.UserSelectionScreen = UserSelectionScreen;
export {
UserSelectionScreen
};
//# sourceMappingURL=userSelection-BSkuSZyR.js.map
//# sourceMappingURL=userSelection-C6c30qSU.js.map

File diff suppressed because one or more lines are too long

View File

@@ -1,6 +1,6 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { e as LGraphNode, c as app, c1 as applyTextReplacements, c0 as ComfyWidgets, c2 as addValueControlWidgets, k as LiteGraph } from "./index-B6dYHNhg.js";
import { e as LGraphNode, c as app, c3 as applyTextReplacements, c2 as ComfyWidgets, c5 as addValueControlWidgets, k as LiteGraph } from "./index-CoOvI8ZH.js";
const CONVERTED_TYPE = "converted-widget";
const VALID_TYPES = [
"STRING",
@@ -701,7 +701,7 @@ app.registerExtension({
const r = origOnInputDblClick ? origOnInputDblClick.apply(this, arguments) : void 0;
const input = this.inputs[slot];
if (!input.widget || !input[ignoreDblClick]) {
if (!(input.type in ComfyWidgets) && !(input.widget[GET_CONFIG]?.()?.[0] instanceof Array)) {
if (!(input.type in ComfyWidgets) && !(input.widget?.[GET_CONFIG]?.()?.[0] instanceof Array)) {
return r;
}
}
@@ -759,4 +759,4 @@ export {
mergeIfValid,
setWidgetConfig
};
//# sourceMappingURL=widgetInputs-BJ21PG7d.js.map
//# sourceMappingURL=widgetInputs-CRPRgKEi.js.map

File diff suppressed because one or more lines are too long

BIN
web/cursor/colorSelect.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 373 B

BIN
web/cursor/paintBucket.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 410 B

2
web/extensions/core/maskEditorOld.js vendored Normal file
View File

@@ -0,0 +1,2 @@
// Shim for extensions/core/maskEditorOld.ts
export const MaskEditorDialogOld = window.comfyAPI.maskEditorOld.MaskEditorDialogOld;

4
web/index.html vendored
View File

@@ -6,8 +6,8 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no">
<link rel="stylesheet" type="text/css" href="user.css" />
<link rel="stylesheet" type="text/css" href="materialdesignicons.min.css" />
<script type="module" crossorigin src="./assets/index-B6dYHNhg.js"></script>
<link rel="stylesheet" crossorigin href="./assets/index-BCoLUtIt.css">
<script type="module" crossorigin src="./assets/index-CoOvI8ZH.js"></script>
<link rel="stylesheet" crossorigin href="./assets/index-U_o182q3.css">
</head>
<body class="litegraph grid">
<div id="vue-app"></div>