Compare commits

...

13 Commits

Author SHA1 Message Date
comfyanonymous
696672905f Add mochi support to readme. 2024-11-04 04:55:07 -05:00
comfyanonymous
6c9dbde7de Fix mochi all in one checkpoint t5xxl key names. 2024-11-03 01:40:42 -05:00
comfyanonymous
ee8abf0cff Update folder paths: "clip" -> "text_encoders"
You can still use models/clip but the folder might get removed eventually
on new installs of ComfyUI.
2024-11-02 15:35:38 -04:00
comfyanonymous
fabf449feb Mochi VAE encoder. 2024-11-01 17:33:09 -04:00
Uriel Deveaud
cc9cf6d1bd Rename some nodes in Display Name Mappings (nodes.py) (#5439)
* Update nodes_images.py

Nodes menu has inconsistency in names, some with spaces between words, other not.

* Update nodes.py

Include the node mapping name line for Image Crop Node

* Update nodes_images.py

* Rename image nodes

add space between words for consistency > Display name mappings
2024-10-31 15:18:05 -04:00
Aarni Koskela
1c8286a44b Avoid SyntaxWarning in UniPC docstring (#5442) 2024-10-31 15:17:26 -04:00
comfyanonymous
1af4a47fd1 Bump up mac version for attention upcast bug workaround. 2024-10-31 15:15:31 -04:00
Uriel Deveaud
f2aaa0a475 Rename ImageCrop to Image Crop (#5424)
* Update nodes_images.py

Nodes menu has inconsistency in names, some with spaces between words, other not.

* Update nodes.py

Include the node mapping name line for Image Crop Node

* Update nodes_images.py
2024-10-31 00:35:34 -04:00
comfyanonymous
daa1565b93 Fix diffusers flux controlnet regression. 2024-10-30 13:11:34 -04:00
comfyanonymous
09fdb2b269 Support SD3.5 medium diffusers format weights and loras. 2024-10-30 04:24:00 -04:00
Chenlei Hu
65a8659182 Update web content to release v1.3.26 (#5413)
* Update web content to release v1.3.26

* nit
2024-10-29 14:14:06 -04:00
comfyanonymous
770ab200f2 Cleanup SkipLayerGuidanceSD3 node. 2024-10-29 10:11:46 -04:00
Dango233
954683d0db SLG first implementation for SD3.5 (#5404)
* SLG first implementation for SD3.5

* * Simplify and align with comfy style
2024-10-29 09:59:21 -04:00
37 changed files with 4743 additions and 3947 deletions

View File

@@ -40,6 +40,7 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
- Fully supports SD1.x, SD2.x, [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/), [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/), [SD3](https://comfyanonymous.github.io/ComfyUI_examples/sd3/) and [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
- Asynchronous Queue system
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram.

View File

@@ -16,7 +16,7 @@ class NoiseScheduleVP:
continuous_beta_0=0.1,
continuous_beta_1=20.,
):
"""Create a wrapper class for the forward SDE (VP type).
r"""Create a wrapper class for the forward SDE (VP type).
***
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.

View File

@@ -2,12 +2,16 @@
#adapted to ComfyUI
from typing import Callable, List, Optional, Tuple, Union
from functools import partial
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from comfy.ldm.modules.attention import optimized_attention
import comfy.ops
ops = comfy.ops.disable_weight_init
@@ -158,8 +162,10 @@ class ResBlock(nn.Module):
*,
affine: bool = True,
attn_block: Optional[nn.Module] = None,
padding_mode: str = "replicate",
causal: bool = True,
prune_bottleneck: bool = False,
padding_mode: str,
bias: bool = True,
):
super().__init__()
self.channels = channels
@@ -170,23 +176,23 @@ class ResBlock(nn.Module):
nn.SiLU(inplace=True),
PConv3d(
in_channels=channels,
out_channels=channels,
out_channels=channels // 2 if prune_bottleneck else channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding_mode=padding_mode,
bias=True,
# causal=causal,
bias=bias,
causal=causal,
),
norm_fn(channels, affine=affine),
nn.SiLU(inplace=True),
PConv3d(
in_channels=channels,
in_channels=channels // 2 if prune_bottleneck else channels,
out_channels=channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding_mode=padding_mode,
bias=True,
# causal=causal,
bias=bias,
causal=causal,
),
)
@@ -206,6 +212,81 @@ class ResBlock(nn.Module):
return self.attn_block(x)
class Attention(nn.Module):
def __init__(
self,
dim: int,
head_dim: int = 32,
qkv_bias: bool = False,
out_bias: bool = True,
qk_norm: bool = True,
) -> None:
super().__init__()
self.head_dim = head_dim
self.num_heads = dim // head_dim
self.qk_norm = qk_norm
self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias)
self.out = nn.Linear(dim, dim, bias=out_bias)
def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
"""Compute temporal self-attention.
Args:
x: Input tensor. Shape: [B, C, T, H, W].
chunk_size: Chunk size for large tensors.
Returns:
x: Output tensor. Shape: [B, C, T, H, W].
"""
B, _, T, H, W = x.shape
if T == 1:
# No attention for single frame.
x = x.movedim(1, -1) # [B, C, T, H, W] -> [B, T, H, W, C]
qkv = self.qkv(x)
_, _, x = qkv.chunk(3, dim=-1) # Throw away queries and keys.
x = self.out(x)
return x.movedim(-1, 1) # [B, T, H, W, C] -> [B, C, T, H, W]
# 1D temporal attention.
x = rearrange(x, "B C t h w -> (B h w) t C")
qkv = self.qkv(x)
# Input: qkv with shape [B, t, 3 * num_heads * head_dim]
# Output: x with shape [B, num_heads, t, head_dim]
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(2)
if self.qk_norm:
q = F.normalize(q, p=2, dim=-1)
k = F.normalize(k, p=2, dim=-1)
x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True)
assert x.size(0) == q.size(0)
x = self.out(x)
x = rearrange(x, "(B h w) t C -> B C t h w", B=B, h=H, w=W)
return x
class AttentionBlock(nn.Module):
def __init__(
self,
dim: int,
**attn_kwargs,
) -> None:
super().__init__()
self.norm = norm_fn(dim)
self.attn = Attention(dim, **attn_kwargs)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.attn(self.norm(x))
class CausalUpsampleBlock(nn.Module):
def __init__(
self,
@@ -244,14 +325,9 @@ class CausalUpsampleBlock(nn.Module):
return x
def block_fn(channels, *, has_attention: bool = False, **block_kwargs):
assert has_attention is False #NOTE: if this is ever true add back the attention code.
attn_block = None #AttentionBlock(channels) if has_attention else None
return ResBlock(
channels, affine=True, attn_block=attn_block, **block_kwargs
)
def block_fn(channels, *, affine: bool = True, has_attention: bool = False, **block_kwargs):
attn_block = AttentionBlock(channels) if has_attention else None
return ResBlock(channels, affine=affine, attn_block=attn_block, **block_kwargs)
class DownsampleBlock(nn.Module):
@@ -288,8 +364,9 @@ class DownsampleBlock(nn.Module):
out_channels=out_channels,
kernel_size=(temporal_reduction, spatial_reduction, spatial_reduction),
stride=(temporal_reduction, spatial_reduction, spatial_reduction),
# First layer in each block always uses replicate padding
padding_mode="replicate",
bias=True,
bias=block_kwargs["bias"],
)
)
@@ -382,7 +459,7 @@ class Decoder(nn.Module):
blocks = []
first_block = [
nn.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1))
ops.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1))
] # Input layer.
# First set of blocks preserve channel count.
for _ in range(num_res_blocks[-1]):
@@ -452,11 +529,165 @@ class Decoder(nn.Module):
return self.output_proj(x).contiguous()
class LatentDistribution:
def __init__(self, mean: torch.Tensor, logvar: torch.Tensor):
"""Initialize latent distribution.
Args:
mean: Mean of the distribution. Shape: [B, C, T, H, W].
logvar: Logarithm of variance of the distribution. Shape: [B, C, T, H, W].
"""
assert mean.shape == logvar.shape
self.mean = mean
self.logvar = logvar
def sample(self, temperature=1.0, generator: torch.Generator = None, noise=None):
if temperature == 0.0:
return self.mean
if noise is None:
noise = torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype, generator=generator)
else:
assert noise.device == self.mean.device
noise = noise.to(self.mean.dtype)
if temperature != 1.0:
raise NotImplementedError(f"Temperature {temperature} is not supported.")
# Just Gaussian sample with no scaling of variance.
return noise * torch.exp(self.logvar * 0.5) + self.mean
def mode(self):
return self.mean
class Encoder(nn.Module):
def __init__(
self,
*,
in_channels: int,
base_channels: int,
channel_multipliers: List[int],
num_res_blocks: List[int],
latent_dim: int,
temporal_reductions: List[int],
spatial_reductions: List[int],
prune_bottlenecks: List[bool],
has_attentions: List[bool],
affine: bool = True,
bias: bool = True,
input_is_conv_1x1: bool = False,
padding_mode: str,
):
super().__init__()
self.temporal_reductions = temporal_reductions
self.spatial_reductions = spatial_reductions
self.base_channels = base_channels
self.channel_multipliers = channel_multipliers
self.num_res_blocks = num_res_blocks
self.latent_dim = latent_dim
self.fourier_features = FourierFeatures()
ch = [mult * base_channels for mult in channel_multipliers]
num_down_blocks = len(ch) - 1
assert len(num_res_blocks) == num_down_blocks + 2
layers = (
[ops.Conv3d(in_channels, ch[0], kernel_size=(1, 1, 1), bias=True)]
if not input_is_conv_1x1
else [Conv1x1(in_channels, ch[0])]
)
assert len(prune_bottlenecks) == num_down_blocks + 2
assert len(has_attentions) == num_down_blocks + 2
block = partial(block_fn, padding_mode=padding_mode, affine=affine, bias=bias)
for _ in range(num_res_blocks[0]):
layers.append(block(ch[0], has_attention=has_attentions[0], prune_bottleneck=prune_bottlenecks[0]))
prune_bottlenecks = prune_bottlenecks[1:]
has_attentions = has_attentions[1:]
assert len(temporal_reductions) == len(spatial_reductions) == len(ch) - 1
for i in range(num_down_blocks):
layer = DownsampleBlock(
ch[i],
ch[i + 1],
num_res_blocks=num_res_blocks[i + 1],
temporal_reduction=temporal_reductions[i],
spatial_reduction=spatial_reductions[i],
prune_bottleneck=prune_bottlenecks[i],
has_attention=has_attentions[i],
affine=affine,
bias=bias,
padding_mode=padding_mode,
)
layers.append(layer)
# Additional blocks.
for _ in range(num_res_blocks[-1]):
layers.append(block(ch[-1], has_attention=has_attentions[-1], prune_bottleneck=prune_bottlenecks[-1]))
self.layers = nn.Sequential(*layers)
# Output layers.
self.output_norm = norm_fn(ch[-1])
self.output_proj = Conv1x1(ch[-1], 2 * latent_dim, bias=False)
@property
def temporal_downsample(self):
return math.prod(self.temporal_reductions)
@property
def spatial_downsample(self):
return math.prod(self.spatial_reductions)
def forward(self, x) -> LatentDistribution:
"""Forward pass.
Args:
x: Input video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1]
Returns:
means: Latent tensor. Shape: [B, latent_dim, t, h, w]. Scaled [-1, 1].
h = H // 8, w = W // 8, t - 1 = (T - 1) // 6
logvar: Shape: [B, latent_dim, t, h, w].
"""
assert x.ndim == 5, f"Expected 5D input, got {x.shape}"
x = self.fourier_features(x)
x = self.layers(x)
x = self.output_norm(x)
x = F.silu(x, inplace=True)
x = self.output_proj(x)
means, logvar = torch.chunk(x, 2, dim=1)
assert means.ndim == 5
assert logvar.shape == means.shape
assert means.size(1) == self.latent_dim
return LatentDistribution(means, logvar)
class VideoVAE(nn.Module):
def __init__(self):
super().__init__()
self.encoder = None #TODO once the model releases
self.encoder = Encoder(
in_channels=15,
base_channels=64,
channel_multipliers=[1, 2, 4, 6],
num_res_blocks=[3, 3, 4, 6, 3],
latent_dim=12,
temporal_reductions=[1, 2, 3],
spatial_reductions=[2, 2, 2],
prune_bottlenecks=[False, False, False, False, False],
has_attentions=[False, True, True, True, True],
affine=True,
bias=True,
input_is_conv_1x1=True,
padding_mode="replicate"
)
self.decoder = Decoder(
out_channels=3,
base_channels=128,
@@ -474,7 +705,7 @@ class VideoVAE(nn.Module):
)
def encode(self, x):
return self.encoder(x)
return self.encoder(x).mode()
def decode(self, x):
return self.decoder(x)

View File

@@ -393,6 +393,13 @@ def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_resh
return out
if model_management.is_nvidia(): #pytorch 2.3 and up seem to have this issue.
SDP_BATCH_LIMIT = 2**15
else:
#TODO: other GPUs ?
SDP_BATCH_LIMIT = 2**31
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
if skip_reshape:
b, _, _, dim_head = q.shape
@@ -404,10 +411,15 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
)
if SDP_BATCH_LIMIT >= q.shape[0]:
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
)
else:
out = torch.empty((q.shape[0], q.shape[2], heads * dim_head), dtype=q.dtype, layout=q.layout, device=q.device)
for i in range(0, q.shape[0], SDP_BATCH_LIMIT):
out[i : i + SDP_BATCH_LIMIT] = torch.nn.functional.scaled_dot_product_attention(q[i : i + SDP_BATCH_LIMIT], k[i : i + SDP_BATCH_LIMIT], v[i : i + SDP_BATCH_LIMIT], attn_mask=mask, dropout_p=0.0, is_causal=False).transpose(1, 2).reshape(-1, q.shape[2], heads * dim_head)
return out

View File

@@ -540,7 +540,11 @@ def model_config_from_diffusers_unet(state_dict):
def convert_diffusers_mmdit(state_dict, output_prefix=""):
out_sd = {}
if 'transformer_blocks.0.attn.norm_added_k.weight' in state_dict: #Flux
if 'joint_transformer_blocks.0.attn.add_k_proj.weight' in state_dict: #AuraFlow
num_joint = count_blocks(state_dict, 'joint_transformer_blocks.{}.')
num_single = count_blocks(state_dict, 'single_transformer_blocks.{}.')
sd_map = comfy.utils.auraflow_to_diffusers({"n_double_layers": num_joint, "n_layers": num_joint + num_single}, output_prefix=output_prefix)
elif 'x_embedder.weight' in state_dict: #Flux
depth = count_blocks(state_dict, 'transformer_blocks.{}.')
depth_single_blocks = count_blocks(state_dict, 'single_transformer_blocks.{}.')
hidden_size = state_dict["x_embedder.bias"].shape[0]
@@ -549,10 +553,6 @@ def convert_diffusers_mmdit(state_dict, output_prefix=""):
num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.')
depth = state_dict["pos_embed.proj.weight"].shape[0] // 64
sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix)
elif 'joint_transformer_blocks.0.attn.add_k_proj.weight' in state_dict: #AuraFlow
num_joint = count_blocks(state_dict, 'joint_transformer_blocks.{}.')
num_single = count_blocks(state_dict, 'single_transformer_blocks.{}.')
sd_map = comfy.utils.auraflow_to_diffusers({"n_double_layers": num_joint, "n_layers": num_joint + num_single}, output_prefix=output_prefix)
else:
return None

View File

@@ -896,7 +896,7 @@ def force_upcast_attention_dtype():
upcast = args.force_upcast_attention
try:
macos_version = tuple(int(n) for n in platform.mac_ver()[0].split("."))
if (14, 5) <= macos_version <= (15, 0, 1): # black image bug on recent versions of macOS
if (14, 5) <= macos_version <= (15, 2): # black image bug on recent versions of macOS
upcast = True
except:
pass

View File

@@ -171,6 +171,7 @@ class VAE:
self.downscale_ratio = 8
self.upscale_ratio = 8
self.latent_channels = 4
self.latent_dim = 2
self.output_channels = 3
self.process_input = lambda image: image * 2.0 - 1.0
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
@@ -240,16 +241,22 @@ class VAE:
self.output_channels = 2
self.upscale_ratio = 2048
self.downscale_ratio = 2048
self.latent_dim = 1
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd: #genmo mochi vae
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd or "layers.4.layers.1.attn_block.attn.qkv.weight" in sd or "encoder.layers.4.layers.1.attn_block.attn.qkv.weight": #genmo mochi vae
if "blocks.2.blocks.3.stack.5.weight" in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "decoder."})
if "layers.4.layers.1.attn_block.attn.qkv.weight" in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "encoder."})
self.first_stage_model = comfy.ldm.genmo.vae.model.VideoVAE()
self.latent_channels = 12
self.latent_dim = 3
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (1.5 * max(shape[2], 7) * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
self.upscale_ratio = (lambda a: max(0, a * 6 - 5), 8, 8)
self.working_dtypes = [torch.float16, torch.float32]
else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
@@ -361,17 +368,22 @@ class VAE:
def encode(self, pixel_samples):
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
pixel_samples = pixel_samples.movedim(-1,1)
pixel_samples = pixel_samples.movedim(-1, 1)
if self.latent_dim == 3:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / max(1, memory_used))
batch_number = max(1, batch_number)
samples = torch.empty((pixel_samples.shape[0], self.latent_channels) + tuple(map(lambda a: a // self.downscale_ratio, pixel_samples.shape[2:])), device=self.output_device)
samples = None
for x in range(0, pixel_samples.shape[0], batch_number):
pixels_in = self.process_input(pixel_samples[x:x+batch_number]).to(self.vae_dtype).to(self.device)
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
pixels_in = self.process_input(pixel_samples[x:x + batch_number]).to(self.vae_dtype).to(self.device)
out = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
if samples is None:
samples = torch.empty((pixel_samples.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
samples[x:x + batch_number] = out
except model_management.OOM_EXCEPTION as e:
logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")

View File

@@ -12,7 +12,7 @@ class T5XXLModel(comfy.text_encoders.sd3_clip.T5XXLModel):
class MochiT5XXL(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, clip_name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
class T5XXLTokenizer(sd1_clip.SDTokenizer):

View File

@@ -316,10 +316,18 @@ MMDIT_MAP_BLOCK = {
("context_block.mlp.fc1.weight", "ff_context.net.0.proj.weight"),
("context_block.mlp.fc2.bias", "ff_context.net.2.bias"),
("context_block.mlp.fc2.weight", "ff_context.net.2.weight"),
("context_block.attn.ln_q.weight", "attn.norm_added_q.weight"),
("context_block.attn.ln_k.weight", "attn.norm_added_k.weight"),
("x_block.adaLN_modulation.1.bias", "norm1.linear.bias"),
("x_block.adaLN_modulation.1.weight", "norm1.linear.weight"),
("x_block.attn.proj.bias", "attn.to_out.0.bias"),
("x_block.attn.proj.weight", "attn.to_out.0.weight"),
("x_block.attn.ln_q.weight", "attn.norm_q.weight"),
("x_block.attn.ln_k.weight", "attn.norm_k.weight"),
("x_block.attn2.proj.bias", "attn2.to_out.0.bias"),
("x_block.attn2.proj.weight", "attn2.to_out.0.weight"),
("x_block.attn2.ln_q.weight", "attn2.norm_q.weight"),
("x_block.attn2.ln_k.weight", "attn2.norm_k.weight"),
("x_block.mlp.fc1.bias", "ff.net.0.proj.bias"),
("x_block.mlp.fc1.weight", "ff.net.0.proj.weight"),
("x_block.mlp.fc2.bias", "ff.net.2.bias"),
@@ -349,6 +357,12 @@ def mmdit_to_diffusers(mmdit_config, output_prefix=""):
key_map["{}add_k_proj.{}".format(k, end)] = (qkv, (0, offset, offset))
key_map["{}add_v_proj.{}".format(k, end)] = (qkv, (0, offset * 2, offset))
k = "{}.attn2.".format(block_from)
qkv = "{}.x_block.attn2.qkv.{}".format(block_to, end)
key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, offset))
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, offset, offset))
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, offset * 2, offset))
for k in MMDIT_MAP_BLOCK:
key_map["{}.{}".format(block_from, k[1])] = "{}.{}".format(block_to, k[0])

View File

@@ -3,11 +3,11 @@ import comfy.sd
import comfy.model_management
import nodes
import torch
import re
class TripleCLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ), "clip_name3": (folder_paths.get_filename_list("clip"), )
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ), "clip_name2": (folder_paths.get_filename_list("text_encoders"), ), "clip_name3": (folder_paths.get_filename_list("text_encoders"), )
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
@@ -15,9 +15,9 @@ class TripleCLIPLoader:
CATEGORY = "advanced/loaders"
def load_clip(self, clip_name1, clip_name2, clip_name3):
clip_path1 = folder_paths.get_full_path_or_raise("clip", clip_name1)
clip_path2 = folder_paths.get_full_path_or_raise("clip", clip_name2)
clip_path3 = folder_paths.get_full_path_or_raise("clip", clip_name3)
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1)
clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2)
clip_path3 = folder_paths.get_full_path_or_raise("text_encoders", clip_name3)
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2, clip_path3], embedding_directory=folder_paths.get_folder_paths("embeddings"))
return (clip,)
@@ -95,11 +95,70 @@ class ControlNetApplySD3(nodes.ControlNetApplyAdvanced):
CATEGORY = "conditioning/controlnet"
DEPRECATED = True
class SkipLayerGuidanceSD3:
'''
Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers.
Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377)
Experimental implementation by Dango233@StabilityAI.
'''
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL", ),
"layers": ("STRING", {"default": "7, 8, 9", "multiline": False}),
"scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}),
"start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001})
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "skip_guidance"
CATEGORY = "advanced/guidance"
def skip_guidance(self, model, layers, scale, start_percent, end_percent):
if layers == "" or layers == None:
return (model, )
# check if layer is comma separated integers
def skip(args, extra_args):
return args
model_sampling = model.get_model_object("model_sampling")
sigma_start = model_sampling.percent_to_sigma(start_percent)
sigma_end = model_sampling.percent_to_sigma(end_percent)
def post_cfg_function(args):
model = args["model"]
cond_pred = args["cond_denoised"]
cond = args["cond"]
cfg_result = args["denoised"]
sigma = args["sigma"]
x = args["input"]
model_options = args["model_options"].copy()
for layer in layers:
model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "double_block", layer)
model_sampling.percent_to_sigma(start_percent)
sigma_ = sigma[0].item()
if scale > 0 and sigma_ >= sigma_end and sigma_ <= sigma_start:
(slg,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options)
cfg_result = cfg_result + (cond_pred - slg) * scale
return cfg_result
layers = re.findall(r'\d+', layers)
layers = [int(i) for i in layers]
m = model.clone()
m.set_model_sampler_post_cfg_function(post_cfg_function)
return (m, )
NODE_CLASS_MAPPINGS = {
"TripleCLIPLoader": TripleCLIPLoader,
"EmptySD3LatentImage": EmptySD3LatentImage,
"CLIPTextEncodeSD3": CLIPTextEncodeSD3,
"ControlNetApplySD3": ControlNetApplySD3,
"SkipLayerGuidanceSD3": SkipLayerGuidanceSD3,
}
NODE_DISPLAY_NAME_MAPPINGS = {

View File

@@ -18,7 +18,7 @@ folder_names_and_paths["configs"] = ([os.path.join(models_dir, "configs")], [".y
folder_names_and_paths["loras"] = ([os.path.join(models_dir, "loras")], supported_pt_extensions)
folder_names_and_paths["vae"] = ([os.path.join(models_dir, "vae")], supported_pt_extensions)
folder_names_and_paths["clip"] = ([os.path.join(models_dir, "clip")], supported_pt_extensions)
folder_names_and_paths["text_encoders"] = ([os.path.join(models_dir, "text_encoders"), os.path.join(models_dir, "clip")], supported_pt_extensions)
folder_names_and_paths["diffusion_models"] = ([os.path.join(models_dir, "unet"), os.path.join(models_dir, "diffusion_models")], supported_pt_extensions)
folder_names_and_paths["clip_vision"] = ([os.path.join(models_dir, "clip_vision")], supported_pt_extensions)
folder_names_and_paths["style_models"] = ([os.path.join(models_dir, "style_models")], supported_pt_extensions)
@@ -81,7 +81,8 @@ extension_mimetypes_cache = {
}
def map_legacy(folder_name: str) -> str:
legacy = {"unet": "diffusion_models"}
legacy = {"unet": "diffusion_models",
"clip": "text_encoders"}
return legacy.get(folder_name, folder_name)
if not os.path.exists(input_directory):

View File

@@ -888,7 +888,7 @@ class UNETLoader:
class CLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi"], ),
}}
RETURN_TYPES = ("CLIP",)
@@ -908,15 +908,15 @@ class CLIPLoader:
else:
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
clip_path = folder_paths.get_full_path_or_raise("clip", clip_name)
clip_path = folder_paths.get_full_path_or_raise("text_encoders", clip_name)
clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
return (clip,)
class DualCLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ),
"clip_name2": (folder_paths.get_filename_list("clip"), ),
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ),
"clip_name2": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["sdxl", "sd3", "flux"], ),
}}
RETURN_TYPES = ("CLIP",)
@@ -925,8 +925,8 @@ class DualCLIPLoader:
CATEGORY = "advanced/loaders"
def load_clip(self, clip_name1, clip_name2, type):
clip_path1 = folder_paths.get_full_path_or_raise("clip", clip_name1)
clip_path2 = folder_paths.get_full_path_or_raise("clip", clip_name2)
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1)
clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2)
if type == "sdxl":
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
elif type == "sd3":
@@ -1957,6 +1957,12 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"ImageInvert": "Invert Image",
"ImagePadForOutpaint": "Pad Image for Outpainting",
"ImageBatch": "Batch Images",
"ImageCrop": "Image Crop",
"ImageBlend": "Image Blend",
"ImageBlur": "Image Blur",
"ImageQuantize": "Image Quantize",
"ImageSharpen": "Image Sharpen",
"ImageScaleToTotalPixels": "Scale Image to Total Pixels",
# _for_testing
"VAEDecodeTiled": "VAE Decode (Tiled)",
"VAEEncodeTiled": "VAE Encode (Tiled)",

View File

@@ -1,8 +1,8 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, bK as useExtensionStore, u as useSettingStore, r as ref, o as onMounted, q as computed, g as openBlock, h as createElementBlock, i as createVNode, y as withCtx, z as unref, bL as script$1, A as createBaseVNode, x as createBlock, M as Fragment, N as renderList, am as toDisplayString, ap as createTextVNode, j as createCommentVNode, D as script$4 } from "./index-CgU1oKZt.js";
import { s as script, a as script$2, b as script$3 } from "./index-DBWDcZsl.js";
import "./index-DYEEBf64.js";
import { d as defineComponent, bQ as useExtensionStore, u as useSettingStore, r as ref, o as onMounted, q as computed, g as openBlock, h as createElementBlock, i as createVNode, y as withCtx, z as unref, bR as script$1, A as createBaseVNode, x as createBlock, N as Fragment, O as renderList, a6 as toDisplayString, aw as createTextVNode, j as createCommentVNode, D as script$4 } from "./index-BHayQCxv.js";
import { s as script, a as script$2, b as script$3 } from "./index-CwRXxFdA.js";
import "./index-C_wOqB0f.js";
const _hoisted_1 = { class: "extension-panel" };
const _hoisted_2 = { class: "mt-4" };
const _sfc_main = /* @__PURE__ */ defineComponent({
@@ -100,4 +100,4 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
export {
_sfc_main as default
};
//# sourceMappingURL=ExtensionPanel-DZLYjWBj.js.map
//# sourceMappingURL=ExtensionPanel-BmKi_NKS.js.map

View File

@@ -1 +1 @@
{"version":3,"file":"ExtensionPanel-DZLYjWBj.js","sources":["../../src/components/dialog/content/setting/ExtensionPanel.vue"],"sourcesContent":["<template>\n <div class=\"extension-panel\">\n <DataTable :value=\"extensionStore.extensions\" stripedRows size=\"small\">\n <Column field=\"name\" :header=\"$t('extensionName')\" sortable></Column>\n <Column\n :pt=\"{\n bodyCell: 'flex items-center justify-end'\n }\"\n >\n <template #body=\"slotProps\">\n <ToggleSwitch\n v-model=\"editingEnabledExtensions[slotProps.data.name]\"\n @change=\"updateExtensionStatus\"\n />\n </template>\n </Column>\n </DataTable>\n <div class=\"mt-4\">\n <Message v-if=\"hasChanges\" severity=\"info\">\n <ul>\n <li v-for=\"ext in changedExtensions\" :key=\"ext.name\">\n <span>\n {{ extensionStore.isExtensionEnabled(ext.name) ? '[-]' : '[+]' }}\n </span>\n {{ ext.name }}\n </li>\n </ul>\n </Message>\n <Button\n :label=\"$t('reloadToApplyChanges')\"\n icon=\"pi pi-refresh\"\n @click=\"applyChanges\"\n :disabled=\"!hasChanges\"\n text\n fluid\n severity=\"danger\"\n />\n </div>\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport { ref, computed, onMounted } from 'vue'\nimport { useExtensionStore } from '@/stores/extensionStore'\nimport { useSettingStore } from '@/stores/settingStore'\nimport DataTable from 'primevue/datatable'\nimport Column from 'primevue/column'\nimport ToggleSwitch from 'primevue/toggleswitch'\nimport Button from 'primevue/button'\nimport Message from 'primevue/message'\n\nconst extensionStore = useExtensionStore()\nconst settingStore = useSettingStore()\n\nconst editingEnabledExtensions = ref<Record<string, boolean>>({})\n\nonMounted(() => {\n extensionStore.extensions.forEach((ext) => {\n editingEnabledExtensions.value[ext.name] =\n extensionStore.isExtensionEnabled(ext.name)\n })\n})\n\nconst changedExtensions = computed(() => {\n return extensionStore.extensions.filter(\n (ext) =>\n editingEnabledExtensions.value[ext.name] !==\n extensionStore.isExtensionEnabled(ext.name)\n )\n})\n\nconst hasChanges = computed(() => {\n return changedExtensions.value.length > 0\n})\n\nconst updateExtensionStatus = () => {\n const editingDisabledExtensionNames = Object.entries(\n editingEnabledExtensions.value\n )\n .filter(([_, enabled]) => !enabled)\n .map(([name]) => name)\n\n settingStore.set('Comfy.Extension.Disabled', [\n ...extensionStore.inactiveDisabledExtensionNames,\n ...editingDisabledExtensionNames\n ])\n}\n\nconst applyChanges = () => {\n // Refresh the page to apply changes\n window.location.reload()\n}\n</script>\n"],"names":[],"mappings":";;;;;;;;;;AAmDA,UAAM,iBAAiB;AACvB,UAAM,eAAe;AAEf,UAAA,2BAA2B,IAA6B,CAAA,CAAE;AAEhE,cAAU,MAAM;AACC,qBAAA,WAAW,QAAQ,CAAC,QAAQ;AACzC,iCAAyB,MAAM,IAAI,IAAI,IACrC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA,CAC7C;AAAA,IAAA,CACF;AAEK,UAAA,oBAAoB,SAAS,MAAM;AACvC,aAAO,eAAe,WAAW;AAAA,QAC/B,CAAC,QACC,yBAAyB,MAAM,IAAI,IAAI,MACvC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA;AAAA,IAC9C,CACD;AAEK,UAAA,aAAa,SAAS,MAAM;AACzB,aAAA,kBAAkB,MAAM,SAAS;AAAA,IAAA,CACzC;AAED,UAAM,wBAAwB,6BAAM;AAClC,YAAM,gCAAgC,OAAO;AAAA,QAC3C,yBAAyB;AAAA,MAExB,EAAA,OAAO,CAAC,CAAC,GAAG,OAAO,MAAM,CAAC,OAAO,EACjC,IAAI,CAAC,CAAC,IAAI,MAAM,IAAI;AAEvB,mBAAa,IAAI,4BAA4B;AAAA,QAC3C,GAAG,eAAe;AAAA,QAClB,GAAG;AAAA,MAAA,CACJ;AAAA,IAAA,GAV2B;AAa9B,UAAM,eAAe,6BAAM;AAEzB,aAAO,SAAS;IAAO,GAFJ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}
{"version":3,"file":"ExtensionPanel-BmKi_NKS.js","sources":["../../src/components/dialog/content/setting/ExtensionPanel.vue"],"sourcesContent":["<template>\n <div class=\"extension-panel\">\n <DataTable :value=\"extensionStore.extensions\" stripedRows size=\"small\">\n <Column field=\"name\" :header=\"$t('extensionName')\" sortable></Column>\n <Column\n :pt=\"{\n bodyCell: 'flex items-center justify-end'\n }\"\n >\n <template #body=\"slotProps\">\n <ToggleSwitch\n v-model=\"editingEnabledExtensions[slotProps.data.name]\"\n @change=\"updateExtensionStatus\"\n />\n </template>\n </Column>\n </DataTable>\n <div class=\"mt-4\">\n <Message v-if=\"hasChanges\" severity=\"info\">\n <ul>\n <li v-for=\"ext in changedExtensions\" :key=\"ext.name\">\n <span>\n {{ extensionStore.isExtensionEnabled(ext.name) ? '[-]' : '[+]' }}\n </span>\n {{ ext.name }}\n </li>\n </ul>\n </Message>\n <Button\n :label=\"$t('reloadToApplyChanges')\"\n icon=\"pi pi-refresh\"\n @click=\"applyChanges\"\n :disabled=\"!hasChanges\"\n text\n fluid\n severity=\"danger\"\n />\n </div>\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport { ref, computed, onMounted } from 'vue'\nimport { useExtensionStore } from '@/stores/extensionStore'\nimport { useSettingStore } from '@/stores/settingStore'\nimport DataTable from 'primevue/datatable'\nimport Column from 'primevue/column'\nimport ToggleSwitch from 'primevue/toggleswitch'\nimport Button from 'primevue/button'\nimport Message from 'primevue/message'\n\nconst extensionStore = useExtensionStore()\nconst settingStore = useSettingStore()\n\nconst editingEnabledExtensions = ref<Record<string, boolean>>({})\n\nonMounted(() => {\n extensionStore.extensions.forEach((ext) => {\n editingEnabledExtensions.value[ext.name] =\n extensionStore.isExtensionEnabled(ext.name)\n })\n})\n\nconst changedExtensions = computed(() => {\n return extensionStore.extensions.filter(\n (ext) =>\n editingEnabledExtensions.value[ext.name] !==\n extensionStore.isExtensionEnabled(ext.name)\n )\n})\n\nconst hasChanges = computed(() => {\n return changedExtensions.value.length > 0\n})\n\nconst updateExtensionStatus = () => {\n const editingDisabledExtensionNames = Object.entries(\n editingEnabledExtensions.value\n )\n .filter(([_, enabled]) => !enabled)\n .map(([name]) => name)\n\n settingStore.set('Comfy.Extension.Disabled', [\n ...extensionStore.inactiveDisabledExtensionNames,\n ...editingDisabledExtensionNames\n ])\n}\n\nconst applyChanges = () => {\n // Refresh the page to apply changes\n window.location.reload()\n}\n</script>\n"],"names":[],"mappings":";;;;;;;;;;AAmDA,UAAM,iBAAiB;AACvB,UAAM,eAAe;AAEf,UAAA,2BAA2B,IAA6B,CAAA,CAAE;AAEhE,cAAU,MAAM;AACC,qBAAA,WAAW,QAAQ,CAAC,QAAQ;AACzC,iCAAyB,MAAM,IAAI,IAAI,IACrC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA,CAC7C;AAAA,IAAA,CACF;AAEK,UAAA,oBAAoB,SAAS,MAAM;AACvC,aAAO,eAAe,WAAW;AAAA,QAC/B,CAAC,QACC,yBAAyB,MAAM,IAAI,IAAI,MACvC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA;AAAA,IAC9C,CACD;AAEK,UAAA,aAAa,SAAS,MAAM;AACzB,aAAA,kBAAkB,MAAM,SAAS;AAAA,IAAA,CACzC;AAED,UAAM,wBAAwB,6BAAM;AAClC,YAAM,gCAAgC,OAAO;AAAA,QAC3C,yBAAyB;AAAA,MAExB,EAAA,OAAO,CAAC,CAAC,GAAG,OAAO,MAAM,CAAC,OAAO,EACjC,IAAI,CAAC,CAAC,IAAI,MAAM,IAAI;AAEvB,mBAAa,IAAI,4BAA4B;AAAA,QAC3C,GAAG,eAAe;AAAA,QAClB,GAAG;AAAA,MAAA,CACJ;AAAA,IAAA,GAV2B;AAa9B,UAAM,eAAe,6BAAM;AAEzB,aAAO,SAAS;IAAO,GAFJ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}

File diff suppressed because one or more lines are too long

1
web/assets/GraphView-C4blCugc.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

View File

@@ -1,13 +1,13 @@
.group-title-editor.node-title-editor[data-v-fc3f26e3] {
.group-title-editor.node-title-editor[data-v-8a100d5a] {
z-index: 9999;
padding: 0.25rem;
}
[data-v-fc3f26e3] .editable-text {
[data-v-8a100d5a] .editable-text {
width: 100%;
height: 100%;
}
[data-v-fc3f26e3] .editable-text input {
[data-v-8a100d5a] .editable-text input {
width: 100%;
height: 100%;
/* Override the default font size */
@@ -45,7 +45,7 @@
--sidebar-icon-size: 1rem;
}
.side-tool-bar-container[data-v-b6bfc188] {
.side-tool-bar-container[data-v-37fd2fa4] {
display: flex;
flex-direction: column;
align-items: center;
@@ -58,36 +58,39 @@
background-color: var(--comfy-menu-bg);
color: var(--fg-color);
}
.side-tool-bar-end[data-v-b6bfc188] {
.side-tool-bar-end[data-v-37fd2fa4] {
align-self: flex-end;
margin-top: auto;
}
.p-splitter-gutter {
[data-v-b49f20b1] .p-splitter-gutter {
pointer-events: auto;
}
.gutter-hidden {
display: none !important;
}
.side-bar-panel[data-v-b9df3042] {
.side-bar-panel[data-v-b49f20b1] {
background-color: var(--bg-color);
pointer-events: auto;
}
.splitter-overlay[data-v-b9df3042] {
width: 100%;
height: 100%;
position: absolute;
top: 0;
left: 0;
background-color: transparent;
.bottom-panel[data-v-b49f20b1] {
background-color: var(--bg-color);
pointer-events: auto;
}
.splitter-overlay[data-v-b49f20b1] {
pointer-events: none;
border-style: none;
background-color: transparent;
}
.splitter-overlay-root[data-v-b49f20b1] {
position: absolute;
top: 0px;
left: 0px;
height: 100%;
width: 100%;
/* Set it the same as the ComfyUI menu */
/* Note: Lite-graph DOM widgets have the same z-index as the node id, so
999 should be sufficient to make sure splitter overlays on node's DOM
widgets */
z-index: 999;
border: none;
}
[data-v-37f672ab] .highlight {
@@ -251,7 +254,7 @@
display: none;
}
.comfyui-menu[data-v-b13fdc92] {
.comfyui-menu[data-v-ad2c662b] {
width: 100vw;
background: var(--comfy-menu-bg);
color: var(--fg-color);
@@ -263,13 +266,13 @@
grid-column: 1/-1;
max-height: 90vh;
}
.comfyui-menu.dropzone[data-v-b13fdc92] {
.comfyui-menu.dropzone[data-v-ad2c662b] {
background: var(--p-highlight-background);
}
.comfyui-menu.dropzone-active[data-v-b13fdc92] {
.comfyui-menu.dropzone-active[data-v-ad2c662b] {
background: var(--p-highlight-background-focus);
}
.comfyui-logo[data-v-b13fdc92] {
.comfyui-logo[data-v-ad2c662b] {
font-size: 1.2em;
-webkit-user-select: none;
-moz-user-select: none;

File diff suppressed because one or more lines are too long

View File

@@ -1,8 +1,8 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, q as computed, g as openBlock, h as createElementBlock, M as Fragment, N as renderList, i as createVNode, y as withCtx, ap as createTextVNode, am as toDisplayString, z as unref, at as script, j as createCommentVNode, r as ref, bH as FilterMatchMode, K as useKeybindingStore, F as useCommandStore, aC as watchEffect, aZ as useToast, t as resolveDirective, bI as SearchBox, A as createBaseVNode, D as script$2, x as createBlock, af as script$4, b2 as withModifiers, aA as script$6, v as withDirectives, P as pushScopeId, Q as popScopeId, by as KeyComboImpl, bJ as KeybindingImpl, _ as _export_sfc } from "./index-CgU1oKZt.js";
import { s as script$1, a as script$3, b as script$5 } from "./index-DBWDcZsl.js";
import "./index-DYEEBf64.js";
import { d as defineComponent, q as computed, g as openBlock, h as createElementBlock, N as Fragment, O as renderList, i as createVNode, y as withCtx, aw as createTextVNode, a6 as toDisplayString, z as unref, aA as script, j as createCommentVNode, r as ref, bN as FilterMatchMode, M as useKeybindingStore, F as useCommandStore, aJ as watchEffect, b9 as useToast, t as resolveDirective, bO as SearchBox, A as createBaseVNode, D as script$2, x as createBlock, ao as script$4, be as withModifiers, aH as script$6, v as withDirectives, P as pushScopeId, Q as popScopeId, bJ as KeyComboImpl, bP as KeybindingImpl, _ as _export_sfc } from "./index-BHayQCxv.js";
import { s as script$1, a as script$3, b as script$5 } from "./index-CwRXxFdA.js";
import "./index-C_wOqB0f.js";
const _hoisted_1$1 = {
key: 0,
class: "px-2"
@@ -261,4 +261,4 @@ const KeybindingPanel = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "d
export {
KeybindingPanel as default
};
//# sourceMappingURL=KeybindingPanel-YkUFoiMw.js.map
//# sourceMappingURL=KeybindingPanel-Dm_3sBT5.js.map

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

1
web/assets/index-BHayQCxv.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

View File

@@ -1,7 +1,7 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { bu as ComfyDialog, bv as $el, bw as ComfyApp, c as app, k as LiteGraph, aP as LGraphCanvas, bx as DraggableList, a_ as useToastStore, ax as useNodeDefStore, bq as api, L as LGraphGroup, by as KeyComboImpl, K as useKeybindingStore, F as useCommandStore, e as LGraphNode, bz as ComfyWidgets, bA as applyTextReplacements, av as NodeSourceType, bB as NodeBadgeMode, u as useSettingStore, q as computed, bC as getColorPalette, w as watch, bD as BadgePosition, aR as LGraphBadge, bE as _, bF as defaultColorPalette } from "./index-CgU1oKZt.js";
import { mergeIfValid, getWidgetConfig, setWidgetConfig } from "./widgetInputs-DNVvusS1.js";
import { bF as ComfyDialog, bG as $el, bH as ComfyApp, c as app, k as LiteGraph, b0 as LGraphCanvas, bI as DraggableList, ba as useToastStore, aE as useNodeDefStore, bC as api, L as LGraphGroup, bJ as KeyComboImpl, M as useKeybindingStore, F as useCommandStore, e as LGraphNode, bK as ComfyWidgets, bL as applyTextReplacements } from "./index-BHayQCxv.js";
import { mergeIfValid, getWidgetConfig, setWidgetConfig } from "./widgetInputs-DdecKYqd.js";
class ClipspaceDialog extends ComfyDialog {
static {
__name(this, "ClipspaceDialog");
@@ -37,7 +37,9 @@ class ClipspaceDialog extends ComfyDialog {
...self.createButtons()
]);
if (self.element) {
self.element.removeChild(self.element.firstChild);
if (self.element.firstChild) {
self.element.removeChild(self.element.firstChild);
}
self.element.appendChild(children);
} else {
self.element = $el("div.comfy-modal", { parent: document.body }, [
@@ -76,7 +78,7 @@ class ClipspaceDialog extends ComfyDialog {
return buttons;
}
createImgSettings() {
if (ComfyApp.clipspace.imgs) {
if (ComfyApp.clipspace?.imgs) {
const combo_items = [];
const imgs = ComfyApp.clipspace.imgs;
for (let i = 0; i < imgs.length; i++) {
@@ -87,8 +89,10 @@ class ClipspaceDialog extends ComfyDialog {
{
id: "clipspace_img_selector",
onchange: /* @__PURE__ */ __name((event) => {
ComfyApp.clipspace["selectedIndex"] = event.target.selectedIndex;
ClipspaceDialog.invalidatePreview();
if (event.target && ComfyApp.clipspace) {
ComfyApp.clipspace["selectedIndex"] = event.target.selectedIndex;
ClipspaceDialog.invalidatePreview();
}
}, "onchange")
},
combo_items
@@ -102,7 +106,9 @@ class ClipspaceDialog extends ComfyDialog {
{
id: "clipspace_img_paste_mode",
onchange: /* @__PURE__ */ __name((event) => {
ComfyApp.clipspace["img_paste_mode"] = event.target.value;
if (event.target && ComfyApp.clipspace) {
ComfyApp.clipspace["img_paste_mode"] = event.target.value;
}
}, "onchange")
},
[
@@ -127,7 +133,7 @@ class ClipspaceDialog extends ComfyDialog {
}
}
createImgPreview() {
if (ComfyApp.clipspace.imgs) {
if (ComfyApp.clipspace?.imgs) {
return $el("img", { id: "clipspace_preview", ondragstart: /* @__PURE__ */ __name(() => false, "ondragstart") });
} else return [];
}
@@ -173,9 +179,9 @@ const ext$2 = {
requestAnimationFrame(() => {
const currentNode = LGraphCanvas.active_canvas.current_node;
const clickedComboValue = currentNode.widgets?.filter(
(w) => w.type === "combo" && w.options.values.length === values.length
(w) => w.type === "combo" && w.options.values?.length === values.length
).find(
(w) => w.options.values.every((v, i) => v === values[i])
(w) => w.options.values?.every((v, i) => v === values[i])
)?.value;
let selectedIndex = clickedComboValue ? values.findIndex((v) => v === clickedComboValue) : 0;
if (selectedIndex < 0) {
@@ -244,7 +250,7 @@ const ext$2 = {
filter.addEventListener("input", () => {
const term = filter.value.toLocaleLowerCase();
displayedItems = items.filter((item) => {
const isVisible = !term || item.textContent.toLocaleLowerCase().includes(term);
const isVisible = !term || item.textContent?.toLocaleLowerCase().includes(term);
item.style.display = isVisible ? "block" : "none";
return isVisible;
});
@@ -1224,7 +1230,7 @@ class GroupNodeConfig {
checkPrimitiveConnection(link, inputName, inputs) {
const sourceNode = this.nodeData.nodes[link[0]];
if (sourceNode.type === "PrimitiveNode") {
const [sourceNodeId, _2, targetNodeId, __] = link;
const [sourceNodeId, _, targetNodeId, __] = link;
const primitiveDef = this.primitiveDefs[sourceNodeId];
const targetWidget = inputs[inputName];
const primitiveConfig = primitiveDef.input.required.value;
@@ -1619,7 +1625,7 @@ class GroupNodeHandler {
return newNodes;
};
const getExtraMenuOptions = this.node.getExtraMenuOptions;
this.node.getExtraMenuOptions = function(_2, options) {
this.node.getExtraMenuOptions = function(_, options) {
getExtraMenuOptions?.apply(this, arguments);
let optionIndex = options.findIndex((o) => o.content === "Outputs");
if (optionIndex === -1) optionIndex = options.length;
@@ -1793,7 +1799,7 @@ class GroupNodeHandler {
} else if (innerNode.type === "Reroute") {
const rerouteLinks = this.groupData.linksFrom[old.node.index];
if (rerouteLinks) {
for (const [_2, , targetNodeId, targetSlot] of rerouteLinks["0"]) {
for (const [_, , targetNodeId, targetSlot] of rerouteLinks["0"]) {
const node = this.innerNodes[targetNodeId];
const input = node.inputs[targetSlot];
if (input.widget) {
@@ -2408,10 +2414,10 @@ const ext = {
defaultValue: 2,
type: "combo",
options: [
{ value: LiteGraph.STRAIGHT_LINK, text: "Straight" },
{ value: LiteGraph.LINEAR_LINK, text: "Linear" },
{ value: LiteGraph.SPLINE_LINK, text: "Spline" },
{ value: LiteGraph.HIDDEN_LINK, text: "Hidden" }
{ value: LiteGraph.STRAIGHT_LINK.toString(), text: "Straight" },
{ value: LiteGraph.LINEAR_LINK.toString(), text: "Linear" },
{ value: LiteGraph.SPLINE_LINK.toString(), text: "Spline" },
{ value: LiteGraph.HIDDEN_LINK.toString(), text: "Hidden" }
],
onChange(value) {
app2.canvas.links_render_mode = +value;
@@ -3934,7 +3940,7 @@ app.registerExtension({
};
this.isVirtualNode = true;
}
getExtraMenuOptions(_2, options) {
getExtraMenuOptions(_, options) {
options.unshift(
{
content: (this.properties.showOutputText ? "Hide" : "Show") + " Type",
@@ -4157,7 +4163,7 @@ app.registerExtension({
slot_types_default_in: {},
async beforeRegisterNodeDef(nodeType, nodeData, app2) {
var nodeId = nodeData.name;
const inputs = nodeData["input"]["required"];
const inputs = nodeData["input"]?.["required"];
for (const inputKey in inputs) {
var input = inputs[inputKey];
if (typeof input[0] !== "string") continue;
@@ -4179,19 +4185,19 @@ app.registerExtension({
nodeType.comfyClass
);
}
var outputs = nodeData["output"];
for (const key in outputs) {
var type = outputs[key];
if (!(type in this.slot_types_default_in)) {
this.slot_types_default_in[type] = ["Reroute"];
var outputs = nodeData["output"] ?? [];
for (const el of outputs) {
const type2 = el;
if (!(type2 in this.slot_types_default_in)) {
this.slot_types_default_in[type2] = ["Reroute"];
}
this.slot_types_default_in[type].push(nodeId);
if (!(type in LiteGraph.registered_slot_out_types)) {
LiteGraph.registered_slot_out_types[type] = { nodes: [] };
this.slot_types_default_in[type2].push(nodeId);
if (!(type2 in LiteGraph.registered_slot_out_types)) {
LiteGraph.registered_slot_out_types[type2] = { nodes: [] };
}
LiteGraph.registered_slot_out_types[type].nodes.push(nodeType.comfyClass);
if (!LiteGraph.slot_types_out.includes(type)) {
LiteGraph.slot_types_out.push(type);
LiteGraph.registered_slot_out_types[type2].nodes.push(nodeType.comfyClass);
if (!LiteGraph.slot_types_out.includes(type2)) {
LiteGraph.slot_types_out.push(type2);
}
}
var maxNum = this.suggestionsNumber.value;
@@ -4276,7 +4282,7 @@ app.registerExtension({
} else {
w = node.size[0];
h = node.size[1];
let titleMode = node.constructor.title_mode;
const titleMode = node.constructor.title_mode;
if (titleMode !== LiteGraph.TRANSPARENT_TITLE && titleMode !== LiteGraph.NO_TITLE) {
h += LiteGraph.NODE_TITLE_HEIGHT;
shiftY -= LiteGraph.NODE_TITLE_HEIGHT;
@@ -4627,108 +4633,4 @@ app.registerExtension({
};
}
});
function getNodeSource(node) {
const nodeDef = node.constructor.nodeData;
if (!nodeDef) {
return null;
}
const nodeDefStore = useNodeDefStore();
return nodeDefStore.nodeDefsByName[nodeDef.name]?.nodeSource ?? null;
}
__name(getNodeSource, "getNodeSource");
function isCoreNode(node) {
return getNodeSource(node)?.type === NodeSourceType.Core;
}
__name(isCoreNode, "isCoreNode");
function badgeTextVisible(node, badgeMode) {
return badgeMode === NodeBadgeMode.None || isCoreNode(node) && badgeMode === NodeBadgeMode.HideBuiltIn;
}
__name(badgeTextVisible, "badgeTextVisible");
function getNodeIdBadgeText(node, nodeIdBadgeMode) {
return badgeTextVisible(node, nodeIdBadgeMode) ? "" : `#${node.id}`;
}
__name(getNodeIdBadgeText, "getNodeIdBadgeText");
function getNodeSourceBadgeText(node, nodeSourceBadgeMode) {
const nodeSource = getNodeSource(node);
return badgeTextVisible(node, nodeSourceBadgeMode) ? "" : nodeSource?.badgeText ?? "";
}
__name(getNodeSourceBadgeText, "getNodeSourceBadgeText");
function getNodeLifeCycleBadgeText(node, nodeLifeCycleBadgeMode) {
let text = "";
const nodeDef = node.constructor.nodeData;
if (!nodeDef) {
return "";
}
if (nodeDef.deprecated) {
text = "[DEPR]";
}
if (nodeDef.experimental) {
text = "[BETA]";
}
return badgeTextVisible(node, nodeLifeCycleBadgeMode) ? "" : text;
}
__name(getNodeLifeCycleBadgeText, "getNodeLifeCycleBadgeText");
class NodeBadgeExtension {
static {
__name(this, "NodeBadgeExtension");
}
constructor(nodeIdBadgeMode = null, nodeSourceBadgeMode = null, nodeLifeCycleBadgeMode = null, colorPalette = null) {
this.nodeIdBadgeMode = nodeIdBadgeMode;
this.nodeSourceBadgeMode = nodeSourceBadgeMode;
this.nodeLifeCycleBadgeMode = nodeLifeCycleBadgeMode;
this.colorPalette = colorPalette;
}
name = "Comfy.NodeBadge";
init(app2) {
const settingStore = useSettingStore();
this.nodeSourceBadgeMode = computed(
() => settingStore.get("Comfy.NodeBadge.NodeSourceBadgeMode")
);
this.nodeIdBadgeMode = computed(
() => settingStore.get("Comfy.NodeBadge.NodeIdBadgeMode")
);
this.nodeLifeCycleBadgeMode = computed(
() => settingStore.get(
"Comfy.NodeBadge.NodeLifeCycleBadgeMode"
)
);
this.colorPalette = computed(
() => getColorPalette(settingStore.get("Comfy.ColorPalette"))
);
watch(this.nodeSourceBadgeMode, () => {
app2.graph.setDirtyCanvas(true, true);
});
watch(this.nodeIdBadgeMode, () => {
app2.graph.setDirtyCanvas(true, true);
});
watch(this.nodeLifeCycleBadgeMode, () => {
app2.graph.setDirtyCanvas(true, true);
});
}
nodeCreated(node, app2) {
node.badgePosition = BadgePosition.TopRight;
node.badge_enabled = true;
const badge = computed(
() => new LGraphBadge({
text: _.truncate(
[
getNodeIdBadgeText(node, this.nodeIdBadgeMode.value),
getNodeLifeCycleBadgeText(
node,
this.nodeLifeCycleBadgeMode.value
),
getNodeSourceBadgeText(node, this.nodeSourceBadgeMode.value)
].filter((s) => s.length > 0).join(" "),
{
length: 31
}
),
fgColor: this.colorPalette.value.colors.litegraph_base?.BADGE_FG_COLOR || defaultColorPalette.colors.litegraph_base.BADGE_FG_COLOR,
bgColor: this.colorPalette.value.colors.litegraph_base?.BADGE_BG_COLOR || defaultColorPalette.colors.litegraph_base.BADGE_BG_COLOR
})
);
node.badges.push(() => badge.value);
}
}
app.registerExtension(new NodeBadgeExtension());
//# sourceMappingURL=index-D36_Nnai.js.map
//# sourceMappingURL=index-BReiUkk9.js.map

1
web/assets/index-BReiUkk9.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

View File

@@ -1,51 +1,30 @@
:root {
--red-600: #dc3545;
}
.comfy-missing-nodes[data-v-0a88b934] {
font-family: monospace;
color: var(--red-600);
padding: 1.5rem;
.no-results-placeholder[data-v-a1e982e0] .p-card {
background-color: var(--surface-ground);
border-radius: var(--border-radius);
box-shadow: var(--card-shadow);
text-align: center;
box-shadow: unset;
}
.warning-title[data-v-0a88b934] {
margin-top: 0;
.no-results-placeholder h3[data-v-a1e982e0] {
color: var(--text-color);
margin-bottom: 0.5rem;
}
.no-results-placeholder p[data-v-a1e982e0] {
color: var(--text-color-secondary);
margin-bottom: 1rem;
}
.warning-description[data-v-0a88b934] {
margin-bottom: 1rem;
}
.missing-nodes-list[data-v-0a88b934] {
.comfy-missing-nodes[data-v-05a7c5eb] {
max-height: 300px;
overflow-y: auto;
}
.missing-nodes-list.maximized[data-v-0a88b934] {
max-height: unset;
}
.missing-node-item[data-v-0a88b934] {
display: flex;
align-items: center;
padding: 0.5rem;
}
.node-type[data-v-0a88b934] {
font-weight: 600;
color: var(--text-color);
}
.node-hint[data-v-0a88b934] {
.node-hint[data-v-05a7c5eb] {
margin-left: 0.5rem;
font-style: italic;
color: var(--text-color-secondary);
}
[data-v-0a88b934] .p-button {
[data-v-05a7c5eb] .p-button {
margin-left: auto;
}
.added-nodes-warning[data-v-0a88b934] {
margin-top: 1rem;
font-style: italic;
}
:root {
--red-600: #dc3545;
@@ -217,24 +196,6 @@
border: none !important;
}
.no-results-placeholder[data-v-c19e9e10] {
height: 100%;
padding: 2rem;
}
.no-results-placeholder[data-v-c19e9e10] .p-card {
background-color: var(--surface-ground);
text-align: center;
box-shadow: unset;
}
.no-results-placeholder h3[data-v-c19e9e10] {
color: var(--text-color);
margin-bottom: 0.5rem;
}
.no-results-placeholder p[data-v-c19e9e10] {
color: var(--text-color-secondary);
margin-bottom: 1rem;
}
.settings-tab-panels {
padding-top: 0px !important;
}
@@ -1808,6 +1769,9 @@ cursor: pointer;
max-width: 3200px;
}
}
.pointer-events-none{
pointer-events: none;
}
.pointer-events-auto{
pointer-events: auto;
}
@@ -2049,6 +2013,9 @@ cursor: pointer;
margin-top: calc(0.5rem * calc(1 - var(--tw-space-y-reverse)));
margin-bottom: calc(0.5rem * var(--tw-space-y-reverse));
}
.justify-self-end{
justify-self: end;
}
.overflow-hidden{
overflow: hidden;
}
@@ -2072,6 +2039,9 @@ cursor: pointer;
.whitespace-pre-line{
white-space: pre-line;
}
.whitespace-pre-wrap{
white-space: pre-wrap;
}
.text-wrap{
text-wrap: wrap;
}
@@ -2135,9 +2105,15 @@ cursor: pointer;
.p-2{
padding: 0.5rem;
}
.p-3{
padding: 0.75rem;
}
.p-4{
padding: 1rem;
}
.p-8{
padding: 2rem;
}
.px-0{
padding-left: 0px;
padding-right: 0px;
@@ -2146,6 +2122,10 @@ cursor: pointer;
padding-left: 0.5rem;
padding-right: 0.5rem;
}
.px-4{
padding-left: 1rem;
padding-right: 1rem;
}
.py-0{
padding-top: 0px;
padding-bottom: 0px;

View File

@@ -1,6 +1,6 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { bM as script$4, A as createBaseVNode, g as openBlock, h as createElementBlock, m as mergeProps } from "./index-CgU1oKZt.js";
import { bS as script$4, A as createBaseVNode, g as openBlock, h as createElementBlock, m as mergeProps } from "./index-BHayQCxv.js";
var script$3 = {
name: "BarsIcon",
"extends": script$4
@@ -99,4 +99,4 @@ export {
script$2 as c,
script as s
};
//# sourceMappingURL=index-DYEEBf64.js.map
//# sourceMappingURL=index-C_wOqB0f.js.map

File diff suppressed because one or more lines are too long

1
web/assets/index-CgU1oKZt.js.map generated vendored

File diff suppressed because one or more lines are too long

View File

@@ -1,7 +1,7 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { bM as script$s, A as createBaseVNode, g as openBlock, h as createElementBlock, m as mergeProps, B as BaseStyle, R as script$t, am as toDisplayString, al as Ripple, t as resolveDirective, v as withDirectives, x as createBlock, O as resolveDynamicComponent, bN as script$u, l as resolveComponent, C as normalizeClass, ao as createSlots, y as withCtx, bf as script$v, b5 as script$w, M as Fragment, N as renderList, ap as createTextVNode, aX as setAttribute, a1 as UniqueComponentId, aV as normalizeProps, p as renderSlot, j as createCommentVNode, ac as equals, aS as script$x, bO as script$y, bP as getFirstFocusableElement, a5 as OverlayEventBus, Y as getVNodeProp, a3 as resolveFieldData, bQ as invokeElementMethod, bR as getAttribute, bS as getNextElementSibling, W as getOuterWidth, bT as getPreviousElementSibling, D as script$z, ai as script$A, bU as script$B, aU as script$D, a0 as isNotEmpty, b2 as withModifiers, X as getOuterHeight, bV as _default, a2 as ZIndex, a4 as focus, a7 as addStyle, a9 as absolutePosition, aa as ConnectedOverlayScrollHandler, ab as isTouchDevice, bW as FilterOperator, ah as script$E, bX as FocusTrap, i as createVNode, an as Transition, bY as withKeys, bZ as getIndex, s as script$G, b_ as isClickable, b$ as clearSelection, c0 as localeComparator, c1 as sort, c2 as FilterService, bH as FilterMatchMode, ae as findSingle, c3 as findIndexInList, c4 as find, c5 as exportCSV, c6 as getOffset, c7 as getHiddenElementOuterWidth, c8 as getHiddenElementOuterHeight, c9 as reorderArray, ca as getWindowScrollTop, cb as removeClass, cc as addClass, a6 as isEmpty, ag as script$H, aj as script$I, aT as script$L, $ as vShow } from "./index-CgU1oKZt.js";
import { b as script$C, c as script$F, s as script$J, a as script$K } from "./index-DYEEBf64.js";
import { bS as script$s, A as createBaseVNode, g as openBlock, h as createElementBlock, m as mergeProps, B as BaseStyle, R as script$t, a6 as toDisplayString, a1 as Ripple, t as resolveDirective, v as withDirectives, x as createBlock, J as resolveDynamicComponent, bT as script$u, l as resolveComponent, C as normalizeClass, av as createSlots, y as withCtx, br as script$v, bh as script$w, N as Fragment, O as renderList, aw as createTextVNode, b7 as setAttribute, ad as UniqueComponentId, b5 as normalizeProps, p as renderSlot, j as createCommentVNode, a4 as equals, b2 as script$x, bU as script$y, bV as getFirstFocusableElement, ag as OverlayEventBus, a8 as getVNodeProp, af as resolveFieldData, bW as invokeElementMethod, a2 as getAttribute, bX as getNextElementSibling, Y as getOuterWidth, bY as getPreviousElementSibling, D as script$z, ar as script$A, a0 as script$B, b4 as script$D, ac as isNotEmpty, be as withModifiers, W as getOuterHeight, bZ as _default, ae as ZIndex, a3 as focus, ai as addStyle, ak as absolutePosition, al as ConnectedOverlayScrollHandler, am as isTouchDevice, b_ as FilterOperator, aq as script$E, b$ as FocusTrap, i as createVNode, au as Transition, c0 as withKeys, c1 as getIndex, s as script$G, c2 as isClickable, c3 as clearSelection, c4 as localeComparator, c5 as sort, c6 as FilterService, bN as FilterMatchMode, V as findSingle, c7 as findIndexInList, c8 as find, c9 as exportCSV, X as getOffset, ca as getHiddenElementOuterWidth, cb as getHiddenElementOuterHeight, cc as reorderArray, cd as getWindowScrollTop, ce as removeClass, cf as addClass, ah as isEmpty, ap as script$H, as as script$I, b3 as script$L, ab as vShow } from "./index-BHayQCxv.js";
import { b as script$C, c as script$F, s as script$J, a as script$K } from "./index-C_wOqB0f.js";
var script$r = {
name: "ArrowDownIcon",
"extends": script$s
@@ -8994,4 +8994,4 @@ export {
script as b,
script$2 as s
};
//# sourceMappingURL=index-DBWDcZsl.js.map
//# sourceMappingURL=index-CwRXxFdA.js.map

File diff suppressed because one or more lines are too long

1
web/assets/index-D36_Nnai.js.map generated vendored

File diff suppressed because one or more lines are too long

View File

@@ -1,6 +1,6 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { bq as api, bv as $el } from "./index-CgU1oKZt.js";
import { bC as api, bG as $el } from "./index-BHayQCxv.js";
function createSpinner() {
const div = document.createElement("div");
div.innerHTML = `<div class="lds-ring"><div></div><div></div><div></div><div></div></div>`;
@@ -126,4 +126,4 @@ window.comfyAPI.userSelection.UserSelectionScreen = UserSelectionScreen;
export {
UserSelectionScreen
};
//# sourceMappingURL=userSelection-DVDwxLD5.js.map
//# sourceMappingURL=userSelection-DITGVoWz.js.map

File diff suppressed because one or more lines are too long

View File

@@ -1,6 +1,6 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { e as LGraphNode, c as app, bA as applyTextReplacements, bz as ComfyWidgets, bG as addValueControlWidgets, k as LiteGraph } from "./index-CgU1oKZt.js";
import { e as LGraphNode, c as app, bL as applyTextReplacements, bK as ComfyWidgets, bM as addValueControlWidgets, k as LiteGraph } from "./index-BHayQCxv.js";
const CONVERTED_TYPE = "converted-widget";
const VALID_TYPES = [
"STRING",
@@ -753,4 +753,4 @@ export {
mergeIfValid,
setWidgetConfig
};
//# sourceMappingURL=widgetInputs-DNVvusS1.js.map
//# sourceMappingURL=widgetInputs-DdecKYqd.js.map

File diff suppressed because one or more lines are too long

4
web/index.html vendored
View File

@@ -6,8 +6,8 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no">
<link rel="stylesheet" type="text/css" href="user.css" />
<link rel="stylesheet" type="text/css" href="materialdesignicons.min.css" />
<script type="module" crossorigin src="./assets/index-CgU1oKZt.js"></script>
<link rel="stylesheet" crossorigin href="./assets/index-BDQCPKeJ.css">
<script type="module" crossorigin src="./assets/index-BHayQCxv.js"></script>
<link rel="stylesheet" crossorigin href="./assets/index-BitceZ14.css">
</head>
<body class="litegraph grid">
<div id="vue-app"></div>