Compare commits
26 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8ce2a1052c | ||
|
|
f82314fcfc | ||
|
|
0075c6d096 | ||
|
|
83ca891118 | ||
|
|
f9f9faface | ||
|
|
471cd3eace | ||
|
|
a68bbafddb | ||
|
|
73e3a9e676 | ||
|
|
518c0dc2fe | ||
|
|
ce0542e10b | ||
|
|
8473019d40 | ||
|
|
89f15894dd | ||
|
|
67158994a4 | ||
|
|
7390ff3b1e | ||
|
|
0bedfb26af | ||
|
|
f71cfd2687 | ||
|
|
c695c4af7f | ||
|
|
0dbba9f751 | ||
|
|
f584758271 | ||
|
|
95b7cf9bbe | ||
|
|
191a0d56b4 | ||
|
|
3c60ecd7a8 | ||
|
|
7ae6626723 | ||
|
|
6632365e16 | ||
|
|
ad07796777 | ||
|
|
1b80895285 |
4
.github/workflows/stable-release.yml
vendored
4
.github/workflows/stable-release.yml
vendored
@@ -17,12 +17,12 @@ on:
|
||||
description: 'Python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "11"
|
||||
default: "12"
|
||||
python_patch:
|
||||
description: 'Python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "9"
|
||||
default: "7"
|
||||
|
||||
|
||||
jobs:
|
||||
|
||||
@@ -12,7 +12,7 @@ on:
|
||||
description: 'extra dependencies'
|
||||
required: false
|
||||
type: string
|
||||
default: "\"numpy<2\""
|
||||
default: ""
|
||||
cu:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
@@ -23,13 +23,13 @@ on:
|
||||
description: 'python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "11"
|
||||
default: "12"
|
||||
|
||||
python_patch:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "9"
|
||||
default: "7"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
||||
@@ -13,13 +13,13 @@ on:
|
||||
description: 'python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "11"
|
||||
default: "12"
|
||||
|
||||
python_patch:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "9"
|
||||
default: "7"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
||||
@@ -127,6 +127,8 @@ To run it on services like paperspace, kaggle or colab you can use my [Jupyter N
|
||||
|
||||
## Manual Install (Windows, Linux)
|
||||
|
||||
Note that some dependencies do not yet support python 3.13 so using 3.12 is recommended.
|
||||
|
||||
Git clone this repo.
|
||||
|
||||
Put your SD checkpoints (the huge ckpt/safetensors files) in: models/checkpoints
|
||||
|
||||
@@ -151,6 +151,15 @@ class FrontendManager:
|
||||
return cls.DEFAULT_FRONTEND_PATH
|
||||
|
||||
repo_owner, repo_name, version = cls.parse_version_string(version_string)
|
||||
|
||||
if version.startswith("v"):
|
||||
expected_path = str(Path(cls.CUSTOM_FRONTENDS_ROOT) / f"{repo_owner}_{repo_name}" / version.lstrip("v"))
|
||||
if os.path.exists(expected_path):
|
||||
logging.info(f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}")
|
||||
return expected_path
|
||||
|
||||
logging.info(f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub...")
|
||||
|
||||
provider = provider or FrontEndProvider(repo_owner, repo_name)
|
||||
release = provider.get_release(version)
|
||||
|
||||
@@ -159,16 +168,20 @@ class FrontendManager:
|
||||
Path(cls.CUSTOM_FRONTENDS_ROOT) / provider.folder_name / semantic_version
|
||||
)
|
||||
if not os.path.exists(web_root):
|
||||
# Use tmp path until complete to avoid path exists check passing from interrupted downloads
|
||||
tmp_path = web_root + ".tmp"
|
||||
try:
|
||||
os.makedirs(web_root, exist_ok=True)
|
||||
os.makedirs(tmp_path, exist_ok=True)
|
||||
logging.info(
|
||||
"Downloading frontend(%s) version(%s) to (%s)",
|
||||
provider.folder_name,
|
||||
semantic_version,
|
||||
web_root,
|
||||
tmp_path,
|
||||
)
|
||||
logging.debug(release)
|
||||
download_release_asset_zip(release, destination_path=web_root)
|
||||
download_release_asset_zip(release, destination_path=tmp_path)
|
||||
if os.listdir(tmp_path):
|
||||
os.rename(tmp_path, web_root)
|
||||
finally:
|
||||
# Clean up the directory if it is empty, i.e. the download failed
|
||||
if not os.listdir(web_root):
|
||||
|
||||
@@ -237,6 +237,7 @@ class ControlNet(ControlBase):
|
||||
if len(self.extra_concat_orig) > 0:
|
||||
to_concat = []
|
||||
for c in self.extra_concat_orig:
|
||||
c = c.to(self.cond_hint.device)
|
||||
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
|
||||
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
|
||||
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
|
||||
|
||||
@@ -41,6 +41,8 @@ def manual_stochastic_round_to_float8(x, dtype, generator=None):
|
||||
(2.0 ** (-EXPONENT_BIAS + 1)) * abs_x
|
||||
)
|
||||
|
||||
inf = torch.finfo(dtype)
|
||||
torch.clamp(sign, min=inf.min, max=inf.max, out=sign)
|
||||
return sign
|
||||
|
||||
|
||||
|
||||
@@ -1080,7 +1080,6 @@ def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
d = to_d(x, sigma_hat, temp[0])
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
||||
dt = sigmas[i + 1] - sigma_hat
|
||||
# Euler method
|
||||
x = denoised + d * sigmas[i + 1]
|
||||
return x
|
||||
@@ -1107,7 +1106,6 @@ def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=No
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
d = to_d(x, sigmas[i], temp[0])
|
||||
# Euler method
|
||||
dt = sigma_down - sigmas[i]
|
||||
x = denoised + d * sigma_down
|
||||
if sigmas[i + 1] > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
@@ -1138,7 +1136,6 @@ def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback
|
||||
if sigma_down == 0:
|
||||
# Euler method
|
||||
d = to_d(x, sigmas[i], temp[0])
|
||||
dt = sigma_down - sigmas[i]
|
||||
x = denoised + d * sigma_down
|
||||
else:
|
||||
# DPM-Solver++(2S)
|
||||
|
||||
@@ -415,7 +415,7 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
|
||||
weight *= strength_model
|
||||
|
||||
if isinstance(v, list):
|
||||
v = (calculate_weight(v[1:], comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype, copy=True), key, intermediate_dtype=intermediate_dtype), )
|
||||
v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )
|
||||
|
||||
if len(v) == 1:
|
||||
patch_type = "diff"
|
||||
|
||||
@@ -96,7 +96,8 @@ class BaseModel(torch.nn.Module):
|
||||
|
||||
if not unet_config.get("disable_unet_model_creation", False):
|
||||
if model_config.custom_operations is None:
|
||||
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=model_config.optimizations.get("fp8", False))
|
||||
fp8 = model_config.optimizations.get("fp8", model_config.scaled_fp8 is not None)
|
||||
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8)
|
||||
else:
|
||||
operations = model_config.custom_operations
|
||||
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
|
||||
@@ -244,6 +245,10 @@ class BaseModel(torch.nn.Module):
|
||||
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
|
||||
|
||||
unet_state_dict = self.diffusion_model.state_dict()
|
||||
|
||||
if self.model_config.scaled_fp8 is not None:
|
||||
unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8)
|
||||
|
||||
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
|
||||
|
||||
if self.model_type == ModelType.V_PREDICTION:
|
||||
|
||||
@@ -286,9 +286,15 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
|
||||
return None
|
||||
model_config = model_config_from_unet_config(unet_config, state_dict)
|
||||
if model_config is None and use_base_if_no_match:
|
||||
return comfy.supported_models_base.BASE(unet_config)
|
||||
else:
|
||||
return model_config
|
||||
model_config = comfy.supported_models_base.BASE(unet_config)
|
||||
|
||||
scaled_fp8_weight = state_dict.get("{}scaled_fp8".format(unet_key_prefix), None)
|
||||
if scaled_fp8_weight is not None:
|
||||
model_config.scaled_fp8 = scaled_fp8_weight.dtype
|
||||
if model_config.scaled_fp8 == torch.float32:
|
||||
model_config.scaled_fp8 = torch.float8_e4m3fn
|
||||
|
||||
return model_config
|
||||
|
||||
def unet_prefix_from_state_dict(state_dict):
|
||||
candidates = ["model.diffusion_model.", #ldm/sgm models
|
||||
|
||||
@@ -647,6 +647,9 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
|
||||
pass
|
||||
|
||||
if fp8_dtype is not None:
|
||||
if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
|
||||
return fp8_dtype
|
||||
|
||||
free_model_memory = maximum_vram_for_weights(device)
|
||||
if model_params * 2 > free_model_memory:
|
||||
return fp8_dtype
|
||||
@@ -840,27 +843,21 @@ def force_channels_last():
|
||||
#TODO
|
||||
return False
|
||||
|
||||
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
|
||||
if device is None or weight.device == device:
|
||||
if not copy:
|
||||
if dtype is None or weight.dtype == dtype:
|
||||
return weight
|
||||
return weight.to(dtype=dtype, copy=copy)
|
||||
|
||||
r = torch.empty_like(weight, dtype=dtype, device=device)
|
||||
r.copy_(weight, non_blocking=non_blocking)
|
||||
return r
|
||||
|
||||
def cast_to_device(tensor, device, dtype, copy=False):
|
||||
device_supports_cast = False
|
||||
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
|
||||
device_supports_cast = True
|
||||
elif tensor.dtype == torch.bfloat16:
|
||||
if hasattr(device, 'type') and device.type.startswith("cuda"):
|
||||
device_supports_cast = True
|
||||
elif is_intel_xpu():
|
||||
device_supports_cast = True
|
||||
non_blocking = device_supports_non_blocking(device)
|
||||
return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy)
|
||||
|
||||
non_blocking = device_should_use_non_blocking(device)
|
||||
|
||||
if device_supports_cast:
|
||||
if copy:
|
||||
if tensor.device == device:
|
||||
return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
|
||||
return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
|
||||
else:
|
||||
return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
|
||||
else:
|
||||
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
|
||||
|
||||
def xformers_enabled():
|
||||
global directml_enabled
|
||||
|
||||
@@ -94,6 +94,31 @@ class LowVramPatch:
|
||||
return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))
|
||||
|
||||
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
|
||||
|
||||
def get_key_weight(model, key):
|
||||
set_func = None
|
||||
convert_func = None
|
||||
op_keys = key.rsplit('.', 1)
|
||||
if len(op_keys) < 2:
|
||||
weight = comfy.utils.get_attr(model, key)
|
||||
else:
|
||||
op = comfy.utils.get_attr(model, op_keys[0])
|
||||
try:
|
||||
set_func = getattr(op, "set_{}".format(op_keys[1]))
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
try:
|
||||
convert_func = getattr(op, "convert_{}".format(op_keys[1]))
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
weight = getattr(op, op_keys[1])
|
||||
if convert_func is not None:
|
||||
weight = comfy.utils.get_attr(model, key)
|
||||
|
||||
return weight, set_func, convert_func
|
||||
|
||||
class ModelPatcher:
|
||||
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
|
||||
self.size = size
|
||||
@@ -294,14 +319,16 @@ class ModelPatcher:
|
||||
if not k.startswith(filter_prefix):
|
||||
continue
|
||||
bk = self.backup.get(k, None)
|
||||
weight, set_func, convert_func = get_key_weight(self.model, k)
|
||||
if bk is not None:
|
||||
weight = bk.weight
|
||||
else:
|
||||
weight = model_sd[k]
|
||||
if convert_func is None:
|
||||
convert_func = lambda a, **kwargs: a
|
||||
|
||||
if k in self.patches:
|
||||
p[k] = [weight] + self.patches[k]
|
||||
p[k] = [(weight, convert_func)] + self.patches[k]
|
||||
else:
|
||||
p[k] = (weight,)
|
||||
p[k] = [(weight, convert_func)]
|
||||
return p
|
||||
|
||||
def model_state_dict(self, filter_prefix=None):
|
||||
@@ -317,8 +344,7 @@ class ModelPatcher:
|
||||
if key not in self.patches:
|
||||
return
|
||||
|
||||
weight = comfy.utils.get_attr(self.model, key)
|
||||
|
||||
weight, set_func, convert_func = get_key_weight(self.model, key)
|
||||
inplace_update = self.weight_inplace_update or inplace_update
|
||||
|
||||
if key not in self.backup:
|
||||
@@ -328,12 +354,18 @@ class ModelPatcher:
|
||||
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
|
||||
else:
|
||||
temp_weight = weight.to(torch.float32, copy=True)
|
||||
if convert_func is not None:
|
||||
temp_weight = convert_func(temp_weight, inplace=True)
|
||||
|
||||
out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key)
|
||||
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
|
||||
if inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, key, out_weight)
|
||||
if set_func is None:
|
||||
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
|
||||
if inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, key, out_weight)
|
||||
else:
|
||||
comfy.utils.set_attr_param(self.model, key, out_weight)
|
||||
else:
|
||||
comfy.utils.set_attr_param(self.model, key, out_weight)
|
||||
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
|
||||
|
||||
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
|
||||
mem_counter = 0
|
||||
|
||||
100
comfy/ops.py
100
comfy/ops.py
@@ -19,20 +19,12 @@
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from comfy.cli_args import args
|
||||
import comfy.float
|
||||
|
||||
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
|
||||
if device is None or weight.device == device:
|
||||
if not copy:
|
||||
if dtype is None or weight.dtype == dtype:
|
||||
return weight
|
||||
return weight.to(dtype=dtype, copy=copy)
|
||||
|
||||
r = torch.empty_like(weight, dtype=dtype, device=device)
|
||||
r.copy_(weight, non_blocking=non_blocking)
|
||||
return r
|
||||
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
|
||||
|
||||
def cast_to_input(weight, input, non_blocking=False, copy=True):
|
||||
return cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
|
||||
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
|
||||
|
||||
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
|
||||
if input is not None:
|
||||
@@ -47,12 +39,12 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
|
||||
non_blocking = comfy.model_management.device_supports_non_blocking(device)
|
||||
if s.bias is not None:
|
||||
has_function = s.bias_function is not None
|
||||
bias = cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
|
||||
if has_function:
|
||||
bias = s.bias_function(bias)
|
||||
|
||||
has_function = s.weight_function is not None
|
||||
weight = cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
|
||||
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
|
||||
if has_function:
|
||||
weight = s.weight_function(weight)
|
||||
return weight, bias
|
||||
@@ -258,19 +250,25 @@ def fp8_linear(self, input):
|
||||
if dtype not in [torch.float8_e4m3fn]:
|
||||
return None
|
||||
|
||||
tensor_2d = False
|
||||
if len(input.shape) == 2:
|
||||
tensor_2d = True
|
||||
input = input.unsqueeze(1)
|
||||
|
||||
|
||||
if len(input.shape) == 3:
|
||||
inn = input.reshape(-1, input.shape[2]).to(dtype)
|
||||
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input.dtype)
|
||||
w = w.t()
|
||||
|
||||
scale_weight = self.scale_weight
|
||||
scale_input = self.scale_input
|
||||
if scale_weight is None:
|
||||
scale_weight = torch.ones((1), device=input.device, dtype=torch.float32)
|
||||
if scale_input is None:
|
||||
scale_input = scale_weight
|
||||
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
if scale_input is None:
|
||||
scale_input = torch.ones((1), device=input.device, dtype=torch.float32)
|
||||
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
inn = input.reshape(-1, input.shape[2]).to(dtype)
|
||||
else:
|
||||
inn = (input * (1.0 / scale_input).to(input.dtype)).reshape(-1, input.shape[2]).to(dtype)
|
||||
|
||||
if bias is not None:
|
||||
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
|
||||
@@ -280,7 +278,11 @@ def fp8_linear(self, input):
|
||||
if isinstance(o, tuple):
|
||||
o = o[0]
|
||||
|
||||
if tensor_2d:
|
||||
return o.reshape(input.shape[0], -1)
|
||||
|
||||
return o.reshape((-1, input.shape[1], self.weight.shape[0]))
|
||||
|
||||
return None
|
||||
|
||||
class fp8_ops(manual_cast):
|
||||
@@ -298,15 +300,63 @@ class fp8_ops(manual_cast):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
|
||||
class scaled_fp8_op(manual_cast):
|
||||
class Linear(manual_cast.Linear):
|
||||
def __init__(self, *args, **kwargs):
|
||||
if override_dtype is not None:
|
||||
kwargs['dtype'] = override_dtype
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False):
|
||||
if comfy.model_management.supports_fp8_compute(load_device):
|
||||
if (fp8_optimizations or args.fast) and not disable_fast_fp8:
|
||||
return fp8_ops
|
||||
def reset_parameters(self):
|
||||
if not hasattr(self, 'scale_weight'):
|
||||
self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
|
||||
|
||||
if not scale_input:
|
||||
self.scale_input = None
|
||||
|
||||
if not hasattr(self, 'scale_input'):
|
||||
self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
if fp8_matrix_mult:
|
||||
out = fp8_linear(self, input)
|
||||
if out is not None:
|
||||
return out
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
|
||||
if weight.numel() < input.numel(): #TODO: optimize
|
||||
return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
|
||||
else:
|
||||
return torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
|
||||
|
||||
def convert_weight(self, weight, inplace=False, **kwargs):
|
||||
if inplace:
|
||||
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
|
||||
return weight
|
||||
else:
|
||||
return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype)
|
||||
|
||||
def set_weight(self, weight, inplace_update=False, seed=None, **kwargs):
|
||||
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
|
||||
if inplace_update:
|
||||
self.weight.data.copy_(weight)
|
||||
else:
|
||||
self.weight = torch.nn.Parameter(weight, requires_grad=False)
|
||||
|
||||
return scaled_fp8_op
|
||||
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
|
||||
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
|
||||
if scaled_fp8 is not None:
|
||||
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True, override_dtype=scaled_fp8)
|
||||
|
||||
if fp8_compute and (fp8_optimizations or args.fast) and not disable_fast_fp8:
|
||||
return fp8_ops
|
||||
|
||||
if compute_dtype is None or weight_dtype == compute_dtype:
|
||||
return disable_weight_init
|
||||
if args.fast and not disable_fast_fp8:
|
||||
if comfy.model_management.supports_fp8_compute(load_device):
|
||||
return fp8_ops
|
||||
|
||||
return manual_cast
|
||||
|
||||
@@ -358,8 +358,11 @@ def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6):
|
||||
ts = numpy.rint(scipy.stats.beta.ppf(ts, alpha, beta) * total_timesteps)
|
||||
|
||||
sigs = []
|
||||
last_t = -1
|
||||
for t in ts:
|
||||
sigs += [float(model_sampling.sigmas[int(t)])]
|
||||
if t != last_t:
|
||||
sigs += [float(model_sampling.sigmas[int(t)])]
|
||||
last_t = t
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
|
||||
40
comfy/sd.py
40
comfy/sd.py
@@ -431,6 +431,18 @@ def detect_te_model(sd):
|
||||
return TEModel.T5_BASE
|
||||
return None
|
||||
|
||||
|
||||
def t5xxl_detect(clip_data):
|
||||
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
|
||||
|
||||
dtype_t5 = None
|
||||
for sd in clip_data:
|
||||
if weight_name in sd:
|
||||
return comfy.text_encoders.sd3_clip.t5_xxl_detect(sd)
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
clip_data = state_dicts
|
||||
|
||||
@@ -462,9 +474,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
clip_target.clip = comfy.text_encoders.sd2_clip.SD2ClipModel
|
||||
clip_target.tokenizer = comfy.text_encoders.sd2_clip.SD2Tokenizer
|
||||
elif te_model == TEModel.T5_XXL:
|
||||
weight = clip_data[0]["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
|
||||
dtype_t5 = weight.dtype
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, dtype_t5=dtype_t5)
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, **t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif te_model == TEModel.T5_XL:
|
||||
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
|
||||
@@ -482,25 +492,19 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
elif len(clip_data) == 2:
|
||||
if clip_type == CLIPType.SD3:
|
||||
te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])]
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models)
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, **t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif clip_type == CLIPType.HUNYUAN_DIT:
|
||||
clip_target.clip = comfy.text_encoders.hydit.HyditModel
|
||||
clip_target.tokenizer = comfy.text_encoders.hydit.HyditTokenizer
|
||||
elif clip_type == CLIPType.FLUX:
|
||||
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
|
||||
weight = clip_data[0].get(weight_name, clip_data[1].get(weight_name, None))
|
||||
dtype_t5 = None
|
||||
if weight is not None:
|
||||
dtype_t5 = weight.dtype
|
||||
|
||||
clip_target.clip = comfy.text_encoders.flux.flux_clip(dtype_t5=dtype_t5)
|
||||
clip_target.clip = comfy.text_encoders.flux.flux_clip(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
elif len(clip_data) == 3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.SD3ClipModel
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
|
||||
parameters = 0
|
||||
@@ -575,11 +579,11 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
|
||||
return None
|
||||
|
||||
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
||||
if weight_dtype is not None:
|
||||
if weight_dtype is not None and model_config.scaled_fp8 is None:
|
||||
unet_weight_dtype.append(weight_dtype)
|
||||
|
||||
model_config.custom_operations = model_options.get("custom_operations", None)
|
||||
unet_dtype = model_options.get("weight_dtype", None)
|
||||
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
|
||||
|
||||
if unet_dtype is None:
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
|
||||
@@ -644,6 +648,8 @@ def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffuse
|
||||
sd = temp_sd
|
||||
|
||||
parameters = comfy.utils.calculate_parameters(sd)
|
||||
weight_dtype = comfy.utils.weight_dtype(sd)
|
||||
|
||||
load_device = model_management.get_torch_device()
|
||||
model_config = model_detection.model_config_from_unet(sd, "")
|
||||
|
||||
@@ -670,8 +676,12 @@ def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffuse
|
||||
logging.warning("{} {}".format(diffusers_keys[k], k))
|
||||
|
||||
offload_device = model_management.unet_offload_device()
|
||||
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
||||
if weight_dtype is not None and model_config.scaled_fp8 is None:
|
||||
unet_weight_dtype.append(weight_dtype)
|
||||
|
||||
if dtype is None:
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
|
||||
else:
|
||||
unet_dtype = dtype
|
||||
|
||||
|
||||
@@ -80,7 +80,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
"pooled",
|
||||
"hidden"
|
||||
]
|
||||
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
|
||||
def __init__(self, device="cpu", max_length=77,
|
||||
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False,
|
||||
return_projected_pooled=True, return_attention_masks=False, model_options={}): # clip-vit-base-patch32
|
||||
@@ -94,11 +94,20 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
config = json.load(f)
|
||||
|
||||
operations = model_options.get("custom_operations", None)
|
||||
scaled_fp8 = None
|
||||
|
||||
if operations is None:
|
||||
operations = comfy.ops.manual_cast
|
||||
scaled_fp8 = model_options.get("scaled_fp8", None)
|
||||
if scaled_fp8 is not None:
|
||||
operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8)
|
||||
else:
|
||||
operations = comfy.ops.manual_cast
|
||||
|
||||
self.operations = operations
|
||||
self.transformer = model_class(config, dtype, device, self.operations)
|
||||
if scaled_fp8 is not None:
|
||||
self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8))
|
||||
|
||||
self.num_layers = self.transformer.num_layers
|
||||
|
||||
self.max_length = max_length
|
||||
|
||||
@@ -529,12 +529,11 @@ class SD3(supported_models_base.BASE):
|
||||
clip_l = True
|
||||
if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
|
||||
clip_g = True
|
||||
t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref)
|
||||
if t5_key in state_dict:
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
if "dtype_t5" in t5_detect:
|
||||
t5 = True
|
||||
dtype_t5 = state_dict[t5_key].dtype
|
||||
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.sd3_clip.SD3Tokenizer, comfy.text_encoders.sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.sd3_clip.SD3Tokenizer, comfy.text_encoders.sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, **t5_detect))
|
||||
|
||||
class StableAudio(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
@@ -653,11 +652,8 @@ class Flux(supported_models_base.BASE):
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref)
|
||||
dtype_t5 = None
|
||||
if t5_key in state_dict:
|
||||
dtype_t5 = state_dict[t5_key].dtype
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(dtype_t5=dtype_t5))
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect))
|
||||
|
||||
class FluxSchnell(Flux):
|
||||
unet_config = {
|
||||
|
||||
@@ -49,6 +49,7 @@ class BASE:
|
||||
|
||||
manual_cast_dtype = None
|
||||
custom_operations = None
|
||||
scaled_fp8 = None
|
||||
optimizations = {"fp8": False}
|
||||
|
||||
@classmethod
|
||||
@@ -72,6 +73,7 @@ class BASE:
|
||||
self.unet_config = unet_config.copy()
|
||||
self.sampling_settings = self.sampling_settings.copy()
|
||||
self.latent_format = self.latent_format()
|
||||
self.optimizations = self.optimizations.copy()
|
||||
for x in self.unet_extra_config:
|
||||
self.unet_config[x] = self.unet_extra_config[x]
|
||||
|
||||
|
||||
@@ -1,15 +1,11 @@
|
||||
from comfy import sd1_clip
|
||||
import comfy.text_encoders.t5
|
||||
import comfy.text_encoders.sd3_clip
|
||||
import comfy.model_management
|
||||
from transformers import T5TokenizerFast
|
||||
import torch
|
||||
import os
|
||||
|
||||
class T5XXLModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, model_options=model_options)
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
@@ -41,7 +37,7 @@ class FluxClipModel(torch.nn.Module):
|
||||
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
|
||||
self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
|
||||
self.dtypes = set([dtype, dtype_t5])
|
||||
|
||||
def set_clip_options(self, options):
|
||||
@@ -66,8 +62,11 @@ class FluxClipModel(torch.nn.Module):
|
||||
else:
|
||||
return self.t5xxl.load_sd(sd)
|
||||
|
||||
def flux_clip(dtype_t5=None):
|
||||
def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
class FluxClipModel_(FluxClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options)
|
||||
return FluxClipModel_
|
||||
|
||||
@@ -8,9 +8,27 @@ import comfy.model_management
|
||||
import logging
|
||||
|
||||
class T5XXLModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, model_options=model_options)
|
||||
t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None)
|
||||
if t5xxl_scaled_fp8 is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = t5xxl_scaled_fp8
|
||||
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
|
||||
def t5_xxl_detect(state_dict, prefix=""):
|
||||
out = {}
|
||||
t5_key = "{}encoder.final_layer_norm.weight".format(prefix)
|
||||
if t5_key in state_dict:
|
||||
out["dtype_t5"] = state_dict[t5_key].dtype
|
||||
|
||||
scaled_fp8_key = "{}scaled_fp8".format(prefix)
|
||||
if scaled_fp8_key in state_dict:
|
||||
out["t5xxl_scaled_fp8"] = state_dict[scaled_fp8_key].dtype
|
||||
|
||||
return out
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
@@ -39,7 +57,7 @@ class SD3Tokenizer:
|
||||
return {}
|
||||
|
||||
class SD3ClipModel(torch.nn.Module):
|
||||
def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, device="cpu", dtype=None, model_options={}):
|
||||
def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_attention_mask=False, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
self.dtypes = set()
|
||||
if clip_l:
|
||||
@@ -57,7 +75,8 @@ class SD3ClipModel(torch.nn.Module):
|
||||
|
||||
if t5:
|
||||
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
|
||||
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
|
||||
self.t5_attention_mask = t5_attention_mask
|
||||
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options, attention_mask=self.t5_attention_mask)
|
||||
self.dtypes.add(dtype_t5)
|
||||
else:
|
||||
self.t5xxl = None
|
||||
@@ -87,6 +106,7 @@ class SD3ClipModel(torch.nn.Module):
|
||||
lg_out = None
|
||||
pooled = None
|
||||
out = None
|
||||
extra = {}
|
||||
|
||||
if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
|
||||
if self.clip_l is not None:
|
||||
@@ -111,7 +131,11 @@ class SD3ClipModel(torch.nn.Module):
|
||||
pooled = torch.cat((l_pooled, g_pooled), dim=-1)
|
||||
|
||||
if self.t5xxl is not None:
|
||||
t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
|
||||
t5_output = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
|
||||
t5_out, t5_pooled = t5_output[:2]
|
||||
if self.t5_attention_mask:
|
||||
extra["attention_mask"] = t5_output[2]["attention_mask"]
|
||||
|
||||
if lg_out is not None:
|
||||
out = torch.cat([lg_out, t5_out], dim=-2)
|
||||
else:
|
||||
@@ -123,7 +147,7 @@ class SD3ClipModel(torch.nn.Module):
|
||||
if pooled is None:
|
||||
pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device())
|
||||
|
||||
return out, pooled
|
||||
return out, pooled, extra
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
@@ -133,8 +157,11 @@ class SD3ClipModel(torch.nn.Module):
|
||||
else:
|
||||
return self.t5xxl.load_sd(sd)
|
||||
|
||||
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None):
|
||||
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5xxl_scaled_fp8=None, t5_attention_mask=False):
|
||||
class SD3ClipModel_(SD3ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options)
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options)
|
||||
return SD3ClipModel_
|
||||
|
||||
@@ -68,7 +68,7 @@ def weight_dtype(sd, prefix=""):
|
||||
for k in sd.keys():
|
||||
if k.startswith(prefix):
|
||||
w = sd[k]
|
||||
dtypes[w.dtype] = dtypes.get(w.dtype, 0) + 1
|
||||
dtypes[w.dtype] = dtypes.get(w.dtype, 0) + w.numel()
|
||||
|
||||
if len(dtypes) == 0:
|
||||
return None
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import comfy.utils
|
||||
import comfy_extras.nodes_post_processing
|
||||
import torch
|
||||
|
||||
def reshape_latent_to(target_shape, latent):
|
||||
@@ -145,6 +146,131 @@ class LatentBatchSeedBehavior:
|
||||
|
||||
return (samples_out,)
|
||||
|
||||
class LatentApplyOperation:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples": ("LATENT",),
|
||||
"operation": ("LATENT_OPERATION",),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced/operations"
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def op(self, samples, operation):
|
||||
samples_out = samples.copy()
|
||||
|
||||
s1 = samples["samples"]
|
||||
samples_out["samples"] = operation(latent=s1)
|
||||
return (samples_out,)
|
||||
|
||||
class LatentApplyOperationCFG:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"operation": ("LATENT_OPERATION",),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "latent/advanced/operations"
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def patch(self, model, operation):
|
||||
m = model.clone()
|
||||
|
||||
def pre_cfg_function(args):
|
||||
conds_out = args["conds_out"]
|
||||
if len(conds_out) == 2:
|
||||
conds_out[0] = operation(latent=(conds_out[0] - conds_out[1])) + conds_out[1]
|
||||
else:
|
||||
conds_out[0] = operation(latent=conds_out[0])
|
||||
return conds_out
|
||||
|
||||
m.set_model_sampler_pre_cfg_function(pre_cfg_function)
|
||||
return (m, )
|
||||
|
||||
class LatentOperationTonemapReinhard:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("LATENT_OPERATION",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced/operations"
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def op(self, multiplier):
|
||||
def tonemap_reinhard(latent, **kwargs):
|
||||
latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None]
|
||||
normalized_latent = latent / latent_vector_magnitude
|
||||
|
||||
mean = torch.mean(latent_vector_magnitude, dim=(1,2,3), keepdim=True)
|
||||
std = torch.std(latent_vector_magnitude, dim=(1,2,3), keepdim=True)
|
||||
|
||||
top = (std * 5 + mean) * multiplier
|
||||
|
||||
#reinhard
|
||||
latent_vector_magnitude *= (1.0 / top)
|
||||
new_magnitude = latent_vector_magnitude / (latent_vector_magnitude + 1.0)
|
||||
new_magnitude *= top
|
||||
|
||||
return normalized_latent * new_magnitude
|
||||
return (tonemap_reinhard,)
|
||||
|
||||
class LatentOperationSharpen:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"sharpen_radius": ("INT", {
|
||||
"default": 9,
|
||||
"min": 1,
|
||||
"max": 31,
|
||||
"step": 1
|
||||
}),
|
||||
"sigma": ("FLOAT", {
|
||||
"default": 1.0,
|
||||
"min": 0.1,
|
||||
"max": 10.0,
|
||||
"step": 0.1
|
||||
}),
|
||||
"alpha": ("FLOAT", {
|
||||
"default": 0.1,
|
||||
"min": 0.0,
|
||||
"max": 5.0,
|
||||
"step": 0.01
|
||||
}),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("LATENT_OPERATION",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced/operations"
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def op(self, sharpen_radius, sigma, alpha):
|
||||
def sharpen(latent, **kwargs):
|
||||
luminance = (torch.linalg.vector_norm(latent, dim=(1)) + 1e-6)[:,None]
|
||||
normalized_latent = latent / luminance
|
||||
channels = latent.shape[1]
|
||||
|
||||
kernel_size = sharpen_radius * 2 + 1
|
||||
kernel = comfy_extras.nodes_post_processing.gaussian_kernel(kernel_size, sigma, device=luminance.device)
|
||||
center = kernel_size // 2
|
||||
|
||||
kernel *= alpha * -10
|
||||
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
|
||||
|
||||
padded_image = torch.nn.functional.pad(normalized_latent, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
|
||||
sharpened = torch.nn.functional.conv2d(padded_image, kernel.repeat(channels, 1, 1).unsqueeze(1), padding=kernel_size // 2, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
|
||||
|
||||
return luminance * sharpened
|
||||
return (sharpen,)
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"LatentAdd": LatentAdd,
|
||||
"LatentSubtract": LatentSubtract,
|
||||
@@ -152,4 +278,8 @@ NODE_CLASS_MAPPINGS = {
|
||||
"LatentInterpolate": LatentInterpolate,
|
||||
"LatentBatch": LatentBatch,
|
||||
"LatentBatchSeedBehavior": LatentBatchSeedBehavior,
|
||||
"LatentApplyOperation": LatentApplyOperation,
|
||||
"LatentApplyOperationCFG": LatentApplyOperationCFG,
|
||||
"LatentOperationTonemapReinhard": LatentOperationTonemapReinhard,
|
||||
"LatentOperationSharpen": LatentOperationSharpen,
|
||||
}
|
||||
|
||||
@@ -82,8 +82,8 @@ class LoraSave:
|
||||
"lora_type": (tuple(LORA_TYPES.keys()),),
|
||||
"bias_diff": ("BOOLEAN", {"default": True}),
|
||||
},
|
||||
"optional": {"model_diff": ("MODEL",),
|
||||
"text_encoder_diff": ("CLIP",)},
|
||||
"optional": {"model_diff": ("MODEL", {"tooltip": "The ModelSubtract output to be converted to a lora."}),
|
||||
"text_encoder_diff": ("CLIP", {"tooltip": "The CLIPSubtract output to be converted to a lora."})},
|
||||
}
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save"
|
||||
@@ -113,3 +113,7 @@ class LoraSave:
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"LoraSave": LoraSave
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"LoraSave": "Extract and Save Lora"
|
||||
}
|
||||
|
||||
@@ -40,7 +40,7 @@ class BinaryEventTypes:
|
||||
async def send_socket_catch_exception(function, message):
|
||||
try:
|
||||
await function(message)
|
||||
except (aiohttp.ClientError, aiohttp.ClientPayloadError, ConnectionResetError) as err:
|
||||
except (aiohttp.ClientError, aiohttp.ClientPayloadError, ConnectionResetError, BrokenPipeError, ConnectionError) as err:
|
||||
logging.warning("send error: {}".format(err))
|
||||
|
||||
def get_comfyui_version():
|
||||
|
||||
Reference in New Issue
Block a user