Compare commits
150 Commits
required_f
...
yoland68-p
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b545667469 | ||
|
|
d9c80a85e5 | ||
|
|
3e62c5513a | ||
|
|
cd18582578 | ||
|
|
80a44b97f5 | ||
|
|
9187a09483 | ||
|
|
3041e5c354 | ||
|
|
7689917113 | ||
|
|
486ad8fdc5 | ||
|
|
065d855f14 | ||
|
|
530494588d | ||
|
|
2ab9618732 | ||
|
|
d9a87c1e6a | ||
|
|
551fe8dcee | ||
|
|
ff99861650 | ||
|
|
8d0661d0ba | ||
|
|
6d32dc049e | ||
|
|
aa9d759df3 | ||
|
|
c6c19e9980 | ||
|
|
08ff5fa08a | ||
|
|
4ca3d84277 | ||
|
|
39c27a3705 | ||
|
|
b1c7291569 | ||
|
|
dbc726f80c | ||
|
|
7ee96455e2 | ||
|
|
0a66d4b0af | ||
|
|
5c5457a4ef | ||
|
|
45503f6499 | ||
|
|
005a91ce2b | ||
|
|
68f0d35296 | ||
|
|
83d04717b6 | ||
|
|
7d329771f9 | ||
|
|
c15909bb62 | ||
|
|
772b4c5945 | ||
|
|
5a50c3c7e5 | ||
|
|
30159a7fe6 | ||
|
|
cb9ac3db58 | ||
|
|
8115a7895b | ||
|
|
c8cd7ad795 | ||
|
|
542b4b36b6 | ||
|
|
ac10a0d69e | ||
|
|
0dcc75ca54 | ||
|
|
b685b8a4e0 | ||
|
|
23e39f2ba7 | ||
|
|
78992c4b25 | ||
|
|
f935d42d8e | ||
|
|
a97f2f850a | ||
|
|
5acb705857 | ||
|
|
5c80da31db | ||
|
|
e2eed9eb9b | ||
|
|
11b68ebd22 | ||
|
|
188b383c35 | ||
|
|
2c1d686ec6 | ||
|
|
e8ddc2be95 | ||
|
|
dea1c7474a | ||
|
|
154f2911aa | ||
|
|
3eaad0590e | ||
|
|
7eaff81be1 | ||
|
|
21a11ef817 | ||
|
|
552615235d | ||
|
|
0738e4ea5d | ||
|
|
92cdc692f4 | ||
|
|
2d6805ce57 | ||
|
|
a8f63c0d5b | ||
|
|
454a635c1b | ||
|
|
966c43ce26 | ||
|
|
3ab231f01f | ||
|
|
1f3fba2af5 | ||
|
|
5d0d4ee98a | ||
|
|
9d57b8afd8 | ||
|
|
5d51794607 | ||
|
|
ce22f687cc | ||
|
|
b6fd3ffd10 | ||
|
|
11b72c9c55 | ||
|
|
2c735c13b4 | ||
|
|
fd27494441 | ||
|
|
f43e1d7f41 | ||
|
|
4486b0d0ff | ||
|
|
636d4bfb89 | ||
|
|
dc300a4569 | ||
|
|
f3b09b9f2d | ||
|
|
7ecd5e9614 | ||
|
|
2383a39e3b | ||
|
|
34e06bf7ec | ||
|
|
55822faa05 | ||
|
|
880c205df1 | ||
|
|
3dc240d089 | ||
|
|
19373aee75 | ||
|
|
93292bc450 | ||
|
|
05d5a75cdc | ||
|
|
eba7a25e7a | ||
|
|
dbcfd092a2 | ||
|
|
c14429940f | ||
|
|
0d720e4367 | ||
|
|
1fc00ba4b6 | ||
|
|
9899d187b1 | ||
|
|
f00f340a56 | ||
|
|
cce1d9145e | ||
|
|
b4dc03ad76 | ||
|
|
9ad792f927 | ||
|
|
6fc5dbd52a | ||
|
|
3e8155f7a3 | ||
|
|
8a438115fb | ||
|
|
a14c2fc356 | ||
|
|
9ee6ca99d8 | ||
|
|
bb495cc9b8 | ||
|
|
e51d9ba5fc | ||
|
|
c87a06f934 | ||
|
|
1714a4c158 | ||
|
|
73ecb75a3d | ||
|
|
22ad513c72 | ||
|
|
ed945a1790 | ||
|
|
f9207c6936 | ||
|
|
8ad7477647 | ||
|
|
98bdca4cb2 | ||
|
|
a26da20a76 | ||
|
|
e346d8584e | ||
|
|
ab31b64412 | ||
|
|
fe29739c68 | ||
|
|
e8345a9b7b | ||
|
|
8c6b9f4481 | ||
|
|
cc7e023a4a | ||
|
|
2f7d8159c3 | ||
|
|
70d7242e57 | ||
|
|
49b732afd5 | ||
|
|
3bfe4e5276 | ||
|
|
89e4ea0175 | ||
|
|
3a100b9a55 | ||
|
|
721253cb05 | ||
|
|
3d2e3a6f29 | ||
|
|
2222cf67fd | ||
|
|
ab5413351e | ||
|
|
2b71aab299 | ||
|
|
301e26b131 | ||
|
|
548457bac4 | ||
|
|
0b4584c741 | ||
|
|
a3100c8452 | ||
|
|
832fc02330 | ||
|
|
2d17d8910c | ||
|
|
a40fcfc2d5 | ||
|
|
0a1f8869c9 | ||
|
|
3661c833bc | ||
|
|
84fdaf7b0e | ||
|
|
8edc1f44c1 | ||
|
|
eade1551bb | ||
|
|
581a9991ff | ||
|
|
e471c726e5 | ||
|
|
75c1c757d9 | ||
|
|
ce9b084279 | ||
|
|
2206246055 |
@@ -63,6 +63,11 @@ except:
|
||||
print("checking out master branch") # noqa: T201
|
||||
branch = repo.lookup_branch('master')
|
||||
if branch is None:
|
||||
try:
|
||||
ref = repo.lookup_reference('refs/remotes/origin/master')
|
||||
except:
|
||||
print("pulling.") # noqa: T201
|
||||
pull(repo)
|
||||
ref = repo.lookup_reference('refs/remotes/origin/master')
|
||||
repo.checkout(ref)
|
||||
branch = repo.lookup_branch('master')
|
||||
|
||||
12
.github/workflows/stable-release.yml
vendored
12
.github/workflows/stable-release.yml
vendored
@@ -12,7 +12,7 @@ on:
|
||||
description: 'CUDA version'
|
||||
required: true
|
||||
type: string
|
||||
default: "126"
|
||||
default: "128"
|
||||
python_minor:
|
||||
description: 'Python minor version'
|
||||
required: true
|
||||
@@ -22,7 +22,7 @@ on:
|
||||
description: 'Python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "9"
|
||||
default: "10"
|
||||
|
||||
|
||||
jobs:
|
||||
@@ -36,7 +36,7 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ inputs.git_tag }}
|
||||
fetch-depth: 0
|
||||
fetch-depth: 150
|
||||
persist-credentials: false
|
||||
- uses: actions/cache/restore@v4
|
||||
id: cache
|
||||
@@ -70,7 +70,7 @@ jobs:
|
||||
cd ..
|
||||
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
|
||||
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
|
||||
|
||||
mkdir ComfyUI_windows_portable
|
||||
mv python_embeded ComfyUI_windows_portable
|
||||
@@ -85,12 +85,14 @@ jobs:
|
||||
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia.7z
|
||||
|
||||
cd ComfyUI_windows_portable
|
||||
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
|
||||
|
||||
python_embeded/python.exe -s ./update/update.py ComfyUI/
|
||||
|
||||
ls
|
||||
|
||||
- name: Upload binaries to release
|
||||
|
||||
2
.github/workflows/test-build.yml
vendored
2
.github/workflows/test-build.yml
vendored
@@ -18,7 +18,7 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python-version: ["3.10", "3.11", "3.12", "3.13"]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
|
||||
47
.github/workflows/update-api-stubs.yml
vendored
Normal file
47
.github/workflows/update-api-stubs.yml
vendored
Normal file
@@ -0,0 +1,47 @@
|
||||
name: Generate Pydantic Stubs from api.comfy.org
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: '0 0 * * 1'
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
generate-models:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install 'datamodel-code-generator[http]'
|
||||
|
||||
- name: Generate API models
|
||||
run: |
|
||||
datamodel-codegen --use-subclass-enum --url https://api.comfy.org/openapi --output comfy_api_nodes/apis --output-model-type pydantic_v2.BaseModel
|
||||
|
||||
- name: Check for changes
|
||||
id: git-check
|
||||
run: |
|
||||
git diff --exit-code comfy_api_nodes/apis || echo "changes=true" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Create Pull Request
|
||||
if: steps.git-check.outputs.changes == 'true'
|
||||
uses: peter-evans/create-pull-request@v5
|
||||
with:
|
||||
commit-message: 'chore: update API models from OpenAPI spec'
|
||||
title: 'Update API models from api.comfy.org'
|
||||
body: |
|
||||
This PR updates the API models based on the latest api.comfy.org OpenAPI specification.
|
||||
|
||||
Generated automatically by the a Github workflow.
|
||||
branch: update-api-stubs
|
||||
delete-branch: true
|
||||
base: main
|
||||
@@ -17,7 +17,7 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "126"
|
||||
default: "128"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
@@ -29,7 +29,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "9"
|
||||
default: "10"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
||||
@@ -56,7 +56,7 @@ jobs:
|
||||
cd ..
|
||||
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
|
||||
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
|
||||
|
||||
mkdir ComfyUI_windows_portable_nightly_pytorch
|
||||
mv python_embeded ComfyUI_windows_portable_nightly_pytorch
|
||||
|
||||
12
.github/workflows/windows_release_package.yml
vendored
12
.github/workflows/windows_release_package.yml
vendored
@@ -7,7 +7,7 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "126"
|
||||
default: "128"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
@@ -19,7 +19,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "9"
|
||||
default: "10"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -50,7 +50,7 @@ jobs:
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
fetch-depth: 150
|
||||
persist-credentials: false
|
||||
- shell: bash
|
||||
run: |
|
||||
@@ -67,7 +67,7 @@ jobs:
|
||||
cd ..
|
||||
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
|
||||
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
|
||||
|
||||
mkdir ComfyUI_windows_portable
|
||||
mv python_embeded ComfyUI_windows_portable
|
||||
@@ -82,12 +82,14 @@ jobs:
|
||||
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/new_ComfyUI_windows_portable_nvidia_cu${{ inputs.cu }}_or_cpu.7z
|
||||
|
||||
cd ComfyUI_windows_portable
|
||||
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
|
||||
|
||||
python_embeded/python.exe -s ./update/update.py ComfyUI/
|
||||
|
||||
ls
|
||||
|
||||
- name: Upload binaries to release
|
||||
|
||||
26
CODEOWNERS
26
CODEOWNERS
@@ -5,20 +5,20 @@
|
||||
# Inlined the team members for now.
|
||||
|
||||
# Maintainers
|
||||
*.md @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/tests/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/tests-unit/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/notebooks/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/script_examples/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/.github/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/requirements.txt @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/pyproject.toml @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
*.md @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/tests/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/tests-unit/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/notebooks/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/script_examples/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/.github/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/requirements.txt @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/pyproject.toml @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
|
||||
# Python web server
|
||||
/api_server/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
|
||||
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
|
||||
/utils/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
|
||||
/api_server/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @christian-byrne
|
||||
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @christian-byrne
|
||||
/utils/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @christian-byrne
|
||||
|
||||
# Node developers
|
||||
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered
|
||||
/comfy/comfy_types/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered
|
||||
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
|
||||
/comfy/comfy_types/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
|
||||
|
||||
27
README.md
27
README.md
@@ -49,7 +49,6 @@ Supports all operating systems and GPU types (NVIDIA, AMD, Intel, Apple Silicon,
|
||||
## [Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
|
||||
See what ComfyUI can do with the [example workflows](https://comfyanonymous.github.io/ComfyUI_examples/).
|
||||
|
||||
|
||||
## Features
|
||||
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
|
||||
- Image Models
|
||||
@@ -62,6 +61,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
- [HunyuanDiT](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_dit/)
|
||||
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
|
||||
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
|
||||
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
|
||||
- Video Models
|
||||
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
|
||||
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
|
||||
@@ -69,6 +69,8 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
|
||||
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/)
|
||||
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
|
||||
- 3D Models
|
||||
- [Hunyuan3D 2.0](https://docs.comfy.org/tutorials/3d/hunyuan3D-2)
|
||||
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
- Asynchronous Queue system
|
||||
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
|
||||
@@ -96,6 +98,23 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
|
||||
Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/)
|
||||
|
||||
## Release Process
|
||||
|
||||
ComfyUI follows a weekly release cycle every Friday, with three interconnected repositories:
|
||||
|
||||
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
|
||||
- Releases a new stable version (e.g., v0.7.0)
|
||||
- Serves as the foundation for the desktop release
|
||||
|
||||
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
|
||||
- Builds a new release using the latest stable core version
|
||||
- Version numbers match the core release (e.g., Desktop v1.7.0 uses Core v1.7.0)
|
||||
|
||||
3. **[ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend)**
|
||||
- Weekly frontend updates are merged into the core repository
|
||||
- Features are frozen for the upcoming core release
|
||||
- Development continues for the next release cycle
|
||||
|
||||
## Shortcuts
|
||||
|
||||
| Keybind | Explanation |
|
||||
@@ -146,8 +165,6 @@ Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you
|
||||
|
||||
If you have trouble extracting it, right click the file -> properties -> unblock
|
||||
|
||||
If you have a 50 series Blackwell card like a 5090 or 5080 see [this discussion thread](https://github.com/comfyanonymous/ComfyUI/discussions/6643)
|
||||
|
||||
#### How do I share models between another UI and ComfyUI?
|
||||
|
||||
See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor.
|
||||
@@ -213,9 +230,9 @@ Additional discussion and help can be found [here](https://github.com/comfyanony
|
||||
|
||||
Nvidia users should install stable pytorch using this command:
|
||||
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu126```
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128```
|
||||
|
||||
This is the command to install pytorch nightly instead which supports the new blackwell 50xx series GPUs and might have performance improvements.
|
||||
This is the command to install pytorch nightly instead which might have performance improvements.
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128```
|
||||
|
||||
|
||||
@@ -9,8 +9,14 @@ class AppSettings():
|
||||
self.user_manager = user_manager
|
||||
|
||||
def get_settings(self, request):
|
||||
try:
|
||||
file = self.user_manager.get_request_user_filepath(
|
||||
request, "comfy.settings.json")
|
||||
request,
|
||||
"comfy.settings.json"
|
||||
)
|
||||
except KeyError as e:
|
||||
logging.error("User settings not found.")
|
||||
raise web.HTTPUnauthorized() from e
|
||||
if os.path.isfile(file):
|
||||
try:
|
||||
with open(file) as f:
|
||||
|
||||
@@ -93,16 +93,20 @@ class CustomNodeManager:
|
||||
|
||||
def add_routes(self, routes, webapp, loadedModules):
|
||||
|
||||
example_workflow_folder_names = ["example_workflows", "example", "examples", "workflow", "workflows"]
|
||||
|
||||
@routes.get("/workflow_templates")
|
||||
async def get_workflow_templates(request):
|
||||
"""Returns a web response that contains the map of custom_nodes names and their associated workflow templates. The ones without templates are omitted."""
|
||||
files = [
|
||||
file
|
||||
for folder in folder_paths.get_folder_paths("custom_nodes")
|
||||
for file in glob.glob(
|
||||
os.path.join(folder, "*/example_workflows/*.json")
|
||||
)
|
||||
]
|
||||
|
||||
files = []
|
||||
|
||||
for folder in folder_paths.get_folder_paths("custom_nodes"):
|
||||
for folder_name in example_workflow_folder_names:
|
||||
pattern = os.path.join(folder, f"*/{folder_name}/*.json")
|
||||
matched_files = glob.glob(pattern)
|
||||
files.extend(matched_files)
|
||||
|
||||
workflow_templates_dict = (
|
||||
{}
|
||||
) # custom_nodes folder name -> example workflow names
|
||||
@@ -118,8 +122,15 @@ class CustomNodeManager:
|
||||
|
||||
# Serve workflow templates from custom nodes.
|
||||
for module_name, module_dir in loadedModules:
|
||||
workflows_dir = os.path.join(module_dir, "example_workflows")
|
||||
for folder_name in example_workflow_folder_names:
|
||||
workflows_dir = os.path.join(module_dir, folder_name)
|
||||
|
||||
if os.path.exists(workflows_dir):
|
||||
if folder_name != "example_workflows":
|
||||
logging.debug(
|
||||
"Found example workflow folder '%s' for custom node '%s', consider renaming it to 'example_workflows'",
|
||||
folder_name, module_name)
|
||||
|
||||
webapp.add_routes(
|
||||
[
|
||||
web.static(
|
||||
|
||||
@@ -22,13 +22,21 @@ import app.logger
|
||||
# The path to the requirements.txt file
|
||||
req_path = Path(__file__).parents[1] / "requirements.txt"
|
||||
|
||||
|
||||
def frontend_install_warning_message():
|
||||
"""The warning message to display when the frontend version is not up to date."""
|
||||
|
||||
extra = ""
|
||||
if sys.flags.no_user_site:
|
||||
extra = "-s "
|
||||
return f"Please install the updated requirements.txt file by running:\n{sys.executable} {extra}-m pip install -r {req_path}\n\nThis error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.\n\nIf you are on the portable package you can run: update\\update_comfyui.bat to solve this problem"
|
||||
return f"""
|
||||
Please install the updated requirements.txt file by running:
|
||||
{sys.executable} {extra}-m pip install -r {req_path}
|
||||
|
||||
This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
|
||||
|
||||
If you are on the portable package you can run: update\\update_comfyui.bat to solve this problem
|
||||
""".strip()
|
||||
|
||||
|
||||
def check_frontend_version():
|
||||
@@ -43,7 +51,17 @@ def check_frontend_version():
|
||||
with open(req_path, "r", encoding="utf-8") as f:
|
||||
required_frontend = parse_version(f.readline().split("=")[-1])
|
||||
if frontend_version < required_frontend:
|
||||
app.logger.log_startup_warning("________________________________________________________________________\nWARNING WARNING WARNING WARNING WARNING\n\nInstalled frontend version {} is lower than the recommended version {}.\n\n{}\n________________________________________________________________________".format('.'.join(map(str, frontend_version)), '.'.join(map(str, required_frontend)), frontend_install_warning_message()))
|
||||
app.logger.log_startup_warning(
|
||||
f"""
|
||||
________________________________________________________________________
|
||||
WARNING WARNING WARNING WARNING WARNING
|
||||
|
||||
Installed frontend version {".".join(map(str, frontend_version))} is lower than the recommended version {".".join(map(str, required_frontend))}.
|
||||
|
||||
{frontend_install_warning_message()}
|
||||
________________________________________________________________________
|
||||
""".strip()
|
||||
)
|
||||
else:
|
||||
logging.info("ComfyUI frontend version: {}".format(frontend_version_str))
|
||||
except Exception as e:
|
||||
@@ -150,11 +168,43 @@ class FrontendManager:
|
||||
def default_frontend_path(cls) -> str:
|
||||
try:
|
||||
import comfyui_frontend_package
|
||||
|
||||
return str(importlib.resources.files(comfyui_frontend_package) / "static")
|
||||
except ImportError:
|
||||
logging.error(f"\n\n********** ERROR ***********\n\ncomfyui-frontend-package is not installed. {frontend_install_warning_message()}\n********** ERROR **********\n")
|
||||
logging.error(
|
||||
f"""
|
||||
********** ERROR ***********
|
||||
|
||||
comfyui-frontend-package is not installed.
|
||||
|
||||
{frontend_install_warning_message()}
|
||||
|
||||
********** ERROR ***********
|
||||
""".strip()
|
||||
)
|
||||
sys.exit(-1)
|
||||
|
||||
@classmethod
|
||||
def templates_path(cls) -> str:
|
||||
try:
|
||||
import comfyui_workflow_templates
|
||||
|
||||
return str(
|
||||
importlib.resources.files(comfyui_workflow_templates) / "templates"
|
||||
)
|
||||
except ImportError:
|
||||
logging.error(
|
||||
f"""
|
||||
********** ERROR ***********
|
||||
|
||||
comfyui-workflow-templates is not installed.
|
||||
|
||||
{frontend_install_warning_message()}
|
||||
|
||||
********** ERROR ***********
|
||||
""".strip()
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
|
||||
"""
|
||||
@@ -175,7 +225,9 @@ class FrontendManager:
|
||||
return match_result.group(1), match_result.group(2), match_result.group(3)
|
||||
|
||||
@classmethod
|
||||
def init_frontend_unsafe(cls, version_string: str, provider: Optional[FrontEndProvider] = None) -> str:
|
||||
def init_frontend_unsafe(
|
||||
cls, version_string: str, provider: Optional[FrontEndProvider] = None
|
||||
) -> str:
|
||||
"""
|
||||
Initializes the frontend for the specified version.
|
||||
|
||||
@@ -197,12 +249,20 @@ class FrontendManager:
|
||||
repo_owner, repo_name, version = cls.parse_version_string(version_string)
|
||||
|
||||
if version.startswith("v"):
|
||||
expected_path = str(Path(cls.CUSTOM_FRONTENDS_ROOT) / f"{repo_owner}_{repo_name}" / version.lstrip("v"))
|
||||
expected_path = str(
|
||||
Path(cls.CUSTOM_FRONTENDS_ROOT)
|
||||
/ f"{repo_owner}_{repo_name}"
|
||||
/ version.lstrip("v")
|
||||
)
|
||||
if os.path.exists(expected_path):
|
||||
logging.info(f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}")
|
||||
logging.info(
|
||||
f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}"
|
||||
)
|
||||
return expected_path
|
||||
|
||||
logging.info(f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub...")
|
||||
logging.info(
|
||||
f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub..."
|
||||
)
|
||||
|
||||
provider = provider or FrontEndProvider(repo_owner, repo_name)
|
||||
release = provider.get_release(version)
|
||||
|
||||
@@ -197,6 +197,112 @@ class UserManager():
|
||||
|
||||
return web.json_response(results)
|
||||
|
||||
@routes.get("/v2/userdata")
|
||||
async def list_userdata_v2(request):
|
||||
"""
|
||||
List files and directories in a user's data directory.
|
||||
|
||||
This endpoint provides a structured listing of contents within a specified
|
||||
subdirectory of the user's data storage.
|
||||
|
||||
Query Parameters:
|
||||
- path (optional): The relative path within the user's data directory
|
||||
to list. Defaults to the root ('').
|
||||
|
||||
Returns:
|
||||
- 400: If the requested path is invalid, outside the user's data directory, or is not a directory.
|
||||
- 404: If the requested path does not exist.
|
||||
- 403: If the user is invalid.
|
||||
- 500: If there is an error reading the directory contents.
|
||||
- 200: JSON response containing a list of file and directory objects.
|
||||
Each object includes:
|
||||
- name: The name of the file or directory.
|
||||
- type: 'file' or 'directory'.
|
||||
- path: The relative path from the user's data root.
|
||||
- size (for files): The size in bytes.
|
||||
- modified (for files): The last modified timestamp (Unix epoch).
|
||||
"""
|
||||
requested_rel_path = request.rel_url.query.get('path', '')
|
||||
|
||||
# URL-decode the path parameter
|
||||
try:
|
||||
requested_rel_path = parse.unquote(requested_rel_path)
|
||||
except Exception as e:
|
||||
logging.warning(f"Failed to decode path parameter: {requested_rel_path}, Error: {e}")
|
||||
return web.Response(status=400, text="Invalid characters in path parameter")
|
||||
|
||||
|
||||
# Check user validity and get the absolute path for the requested directory
|
||||
try:
|
||||
base_user_path = self.get_request_user_filepath(request, None, create_dir=False)
|
||||
|
||||
if requested_rel_path:
|
||||
target_abs_path = self.get_request_user_filepath(request, requested_rel_path, create_dir=False)
|
||||
else:
|
||||
target_abs_path = base_user_path
|
||||
|
||||
except KeyError as e:
|
||||
# Invalid user detected by get_request_user_id inside get_request_user_filepath
|
||||
logging.warning(f"Access denied for user: {e}")
|
||||
return web.Response(status=403, text="Invalid user specified in request")
|
||||
|
||||
|
||||
if not target_abs_path:
|
||||
# Path traversal or other issue detected by get_request_user_filepath
|
||||
return web.Response(status=400, text="Invalid path requested")
|
||||
|
||||
# Handle cases where the user directory or target path doesn't exist
|
||||
if not os.path.exists(target_abs_path):
|
||||
# Check if it's the base user directory that's missing (new user case)
|
||||
if target_abs_path == base_user_path:
|
||||
# It's okay if the base user directory doesn't exist yet, return empty list
|
||||
return web.json_response([])
|
||||
else:
|
||||
# A specific subdirectory was requested but doesn't exist
|
||||
return web.Response(status=404, text="Requested path not found")
|
||||
|
||||
if not os.path.isdir(target_abs_path):
|
||||
return web.Response(status=400, text="Requested path is not a directory")
|
||||
|
||||
results = []
|
||||
try:
|
||||
for root, dirs, files in os.walk(target_abs_path, topdown=True):
|
||||
# Process directories
|
||||
for dir_name in dirs:
|
||||
dir_path = os.path.join(root, dir_name)
|
||||
rel_path = os.path.relpath(dir_path, base_user_path).replace(os.sep, '/')
|
||||
results.append({
|
||||
"name": dir_name,
|
||||
"path": rel_path,
|
||||
"type": "directory"
|
||||
})
|
||||
|
||||
# Process files
|
||||
for file_name in files:
|
||||
file_path = os.path.join(root, file_name)
|
||||
rel_path = os.path.relpath(file_path, base_user_path).replace(os.sep, '/')
|
||||
entry_info = {
|
||||
"name": file_name,
|
||||
"path": rel_path,
|
||||
"type": "file"
|
||||
}
|
||||
try:
|
||||
stats = os.stat(file_path) # Use os.stat for potentially better performance with os.walk
|
||||
entry_info["size"] = stats.st_size
|
||||
entry_info["modified"] = stats.st_mtime
|
||||
except OSError as stat_error:
|
||||
logging.warning(f"Could not stat file {file_path}: {stat_error}")
|
||||
pass # Include file with available info
|
||||
results.append(entry_info)
|
||||
except OSError as e:
|
||||
logging.error(f"Error listing directory {target_abs_path}: {e}")
|
||||
return web.Response(status=500, text="Error reading directory contents")
|
||||
|
||||
# Sort results alphabetically, directories first then files
|
||||
results.sort(key=lambda x: (x['type'] != 'directory', x['name'].lower()))
|
||||
|
||||
return web.json_response(results)
|
||||
|
||||
def get_user_data_path(request, check_exists = False, param = "file"):
|
||||
file = request.match_info.get(param, None)
|
||||
if not file:
|
||||
|
||||
@@ -66,6 +66,7 @@ fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diff
|
||||
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
|
||||
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
|
||||
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
|
||||
fpunet_group.add_argument("--fp8_e8m0fnu-unet", action="store_true", help="Store unet weights in fp8_e8m0fnu.")
|
||||
|
||||
fpvae_group = parser.add_mutually_exclusive_group()
|
||||
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
|
||||
@@ -79,6 +80,7 @@ fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Stor
|
||||
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
|
||||
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
|
||||
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
|
||||
fpte_group.add_argument("--bf16-text-enc", action="store_true", help="Store text encoder weights in bf16.")
|
||||
|
||||
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
|
||||
|
||||
@@ -100,6 +102,7 @@ parser.add_argument("--preview-size", type=int, default=512, help="Sets the maxi
|
||||
cache_group = parser.add_mutually_exclusive_group()
|
||||
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
|
||||
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
|
||||
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
|
||||
|
||||
attn_group = parser.add_mutually_exclusive_group()
|
||||
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
||||
@@ -125,6 +128,7 @@ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for e
|
||||
|
||||
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
|
||||
|
||||
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
|
||||
|
||||
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
|
||||
|
||||
@@ -134,8 +138,9 @@ parser.add_argument("--deterministic", action="store_true", help="Make pytorch u
|
||||
class PerformanceFeature(enum.Enum):
|
||||
Fp16Accumulation = "fp16_accumulation"
|
||||
Fp8MatrixMultiplication = "fp8_matrix_mult"
|
||||
CublasOps = "cublas_ops"
|
||||
|
||||
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult")
|
||||
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
|
||||
|
||||
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
||||
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
||||
|
||||
@@ -18,6 +18,7 @@ class Output:
|
||||
setattr(self, key, item)
|
||||
|
||||
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
|
||||
image = image[:, :, :, :3] if image.shape[3] > 3 else image
|
||||
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
|
||||
std = torch.tensor(std, device=image.device, dtype=image.dtype)
|
||||
image = image.movedim(-1, 1)
|
||||
@@ -110,9 +111,13 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
||||
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
||||
embed_shape = sd["vision_model.embeddings.position_embedding.weight"].shape[0]
|
||||
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
|
||||
if embed_shape == 729:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
|
||||
elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
|
||||
elif embed_shape == 1024:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
|
||||
elif embed_shape == 577:
|
||||
if "multi_modal_projector.linear_1.bias" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
|
||||
else:
|
||||
|
||||
13
comfy/clip_vision_siglip_512.json
Normal file
13
comfy/clip_vision_siglip_512.json
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
"num_channels": 3,
|
||||
"hidden_act": "gelu_pytorch_tanh",
|
||||
"hidden_size": 1152,
|
||||
"image_size": 512,
|
||||
"intermediate_size": 4304,
|
||||
"model_type": "siglip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 27,
|
||||
"patch_size": 16,
|
||||
"image_mean": [0.5, 0.5, 0.5],
|
||||
"image_std": [0.5, 0.5, 0.5]
|
||||
}
|
||||
@@ -1,7 +1,7 @@
|
||||
"""Comfy-specific type hinting"""
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import Literal, TypedDict
|
||||
from typing import Literal, TypedDict, Optional
|
||||
from typing_extensions import NotRequired
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
@@ -48,6 +48,7 @@ class IO(StrEnum):
|
||||
FACE_ANALYSIS = "FACE_ANALYSIS"
|
||||
BBOX = "BBOX"
|
||||
SEGS = "SEGS"
|
||||
VIDEO = "VIDEO"
|
||||
|
||||
ANY = "*"
|
||||
"""Always matches any type, but at a price.
|
||||
@@ -99,55 +100,68 @@ class InputTypeOptions(TypedDict):
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/datatypes
|
||||
"""
|
||||
|
||||
default: bool | str | float | int | list | tuple
|
||||
default: NotRequired[bool | str | float | int | list | tuple]
|
||||
"""The default value of the widget"""
|
||||
defaultInput: bool
|
||||
"""Defaults to an input slot rather than a widget"""
|
||||
forceInput: bool
|
||||
"""`defaultInput` and also don't allow converting to a widget"""
|
||||
lazy: bool
|
||||
defaultInput: NotRequired[bool]
|
||||
"""@deprecated in v1.16 frontend. v1.16 frontend allows input socket and widget to co-exist.
|
||||
- defaultInput on required inputs should be dropped.
|
||||
- defaultInput on optional inputs should be replaced with forceInput.
|
||||
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3364
|
||||
"""
|
||||
forceInput: NotRequired[bool]
|
||||
"""Forces the input to be an input slot rather than a widget even a widget is available for the input type."""
|
||||
lazy: NotRequired[bool]
|
||||
"""Declares that this input uses lazy evaluation"""
|
||||
rawLink: bool
|
||||
rawLink: NotRequired[bool]
|
||||
"""When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
|
||||
tooltip: str
|
||||
tooltip: NotRequired[str]
|
||||
"""Tooltip for the input (or widget), shown on pointer hover"""
|
||||
socketless: NotRequired[bool]
|
||||
"""All inputs (including widgets) have an input socket to connect links. When ``true``, if there is a widget for this input, no socket will be created.
|
||||
Available from frontend v1.17.5
|
||||
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3548
|
||||
"""
|
||||
widgetType: NotRequired[str]
|
||||
"""Specifies a type to be used for widget initialization if different from the input type.
|
||||
Available from frontend v1.18.0
|
||||
https://github.com/Comfy-Org/ComfyUI_frontend/pull/3550"""
|
||||
# class InputTypeNumber(InputTypeOptions):
|
||||
# default: float | int
|
||||
min: float
|
||||
min: NotRequired[float]
|
||||
"""The minimum value of a number (``FLOAT`` | ``INT``)"""
|
||||
max: float
|
||||
max: NotRequired[float]
|
||||
"""The maximum value of a number (``FLOAT`` | ``INT``)"""
|
||||
step: float
|
||||
step: NotRequired[float]
|
||||
"""The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)"""
|
||||
round: float
|
||||
round: NotRequired[float]
|
||||
"""Floats are rounded by this value (``FLOAT``)"""
|
||||
# class InputTypeBoolean(InputTypeOptions):
|
||||
# default: bool
|
||||
label_on: str
|
||||
label_on: NotRequired[str]
|
||||
"""The label to use in the UI when the bool is True (``BOOLEAN``)"""
|
||||
label_off: str
|
||||
label_off: NotRequired[str]
|
||||
"""The label to use in the UI when the bool is False (``BOOLEAN``)"""
|
||||
# class InputTypeString(InputTypeOptions):
|
||||
# default: str
|
||||
multiline: bool
|
||||
multiline: NotRequired[bool]
|
||||
"""Use a multiline text box (``STRING``)"""
|
||||
placeholder: str
|
||||
placeholder: NotRequired[str]
|
||||
"""Placeholder text to display in the UI when empty (``STRING``)"""
|
||||
# Deprecated:
|
||||
# defaultVal: str
|
||||
dynamicPrompts: bool
|
||||
dynamicPrompts: NotRequired[bool]
|
||||
"""Causes the front-end to evaluate dynamic prompts (``STRING``)"""
|
||||
# class InputTypeCombo(InputTypeOptions):
|
||||
image_upload: bool
|
||||
image_upload: NotRequired[bool]
|
||||
"""Specifies whether the input should have an image upload button and image preview attached to it. Requires that the input's name is `image`."""
|
||||
image_folder: Literal["input", "output", "temp"]
|
||||
image_folder: NotRequired[Literal["input", "output", "temp"]]
|
||||
"""Specifies which folder to get preview images from if the input has the ``image_upload`` flag.
|
||||
"""
|
||||
remote: RemoteInputOptions
|
||||
remote: NotRequired[RemoteInputOptions]
|
||||
"""Specifies the configuration for a remote input.
|
||||
Available after ComfyUI frontend v1.9.7
|
||||
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2422"""
|
||||
control_after_generate: bool
|
||||
control_after_generate: NotRequired[bool]
|
||||
"""Specifies whether a control widget should be added to the input, adding options to automatically change the value after each prompt is queued. Currently only used for INT and COMBO types."""
|
||||
options: NotRequired[list[str | int | float]]
|
||||
"""COMBO type only. Specifies the selectable options for the combo widget.
|
||||
@@ -165,15 +179,15 @@ class InputTypeOptions(TypedDict):
|
||||
class HiddenInputTypeDict(TypedDict):
|
||||
"""Provides type hinting for the hidden entry of node INPUT_TYPES."""
|
||||
|
||||
node_id: Literal["UNIQUE_ID"]
|
||||
node_id: NotRequired[Literal["UNIQUE_ID"]]
|
||||
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
|
||||
unique_id: Literal["UNIQUE_ID"]
|
||||
unique_id: NotRequired[Literal["UNIQUE_ID"]]
|
||||
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
|
||||
prompt: Literal["PROMPT"]
|
||||
prompt: NotRequired[Literal["PROMPT"]]
|
||||
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
|
||||
extra_pnginfo: Literal["EXTRA_PNGINFO"]
|
||||
extra_pnginfo: NotRequired[Literal["EXTRA_PNGINFO"]]
|
||||
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
|
||||
dynprompt: Literal["DYNPROMPT"]
|
||||
dynprompt: NotRequired[Literal["DYNPROMPT"]]
|
||||
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
|
||||
|
||||
|
||||
@@ -183,11 +197,11 @@ class InputTypeDict(TypedDict):
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs
|
||||
"""
|
||||
|
||||
required: dict[str, tuple[IO, InputTypeOptions]]
|
||||
required: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
|
||||
"""Describes all inputs that must be connected for the node to execute."""
|
||||
optional: dict[str, tuple[IO, InputTypeOptions]]
|
||||
optional: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
|
||||
"""Describes inputs which do not need to be connected."""
|
||||
hidden: HiddenInputTypeDict
|
||||
hidden: NotRequired[HiddenInputTypeDict]
|
||||
"""Offers advanced functionality and server-client communication.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs
|
||||
@@ -220,6 +234,8 @@ class ComfyNodeABC(ABC):
|
||||
"""Flags a node as experimental, informing users that it may change or not work as expected."""
|
||||
DEPRECATED: bool
|
||||
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
|
||||
API_NODE: Optional[bool]
|
||||
"""Flags a node as an API node."""
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
@@ -258,7 +274,7 @@ class ComfyNodeABC(ABC):
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
|
||||
"""
|
||||
OUTPUT_IS_LIST: tuple[bool]
|
||||
OUTPUT_IS_LIST: tuple[bool, ...]
|
||||
"""A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
|
||||
|
||||
Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
|
||||
@@ -277,7 +293,7 @@ class ComfyNodeABC(ABC):
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
|
||||
"""
|
||||
|
||||
RETURN_TYPES: tuple[IO]
|
||||
RETURN_TYPES: tuple[IO, ...]
|
||||
"""A tuple representing the outputs of this node.
|
||||
|
||||
Usage::
|
||||
@@ -286,12 +302,12 @@ class ComfyNodeABC(ABC):
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-types
|
||||
"""
|
||||
RETURN_NAMES: tuple[str]
|
||||
RETURN_NAMES: tuple[str, ...]
|
||||
"""The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-names
|
||||
"""
|
||||
OUTPUT_TOOLTIPS: tuple[str]
|
||||
OUTPUT_TOOLTIPS: tuple[str, ...]
|
||||
"""A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
|
||||
FUNCTION: str
|
||||
"""The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`
|
||||
|
||||
@@ -736,6 +736,7 @@ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
|
||||
return control
|
||||
|
||||
def load_controlnet(ckpt_path, model=None, model_options={}):
|
||||
model_options = model_options.copy()
|
||||
if "global_average_pooling" not in model_options:
|
||||
filename = os.path.splitext(ckpt_path)[0]
|
||||
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
|
||||
|
||||
@@ -116,7 +116,7 @@ class Dino2Embeddings(torch.nn.Module):
|
||||
def forward(self, pixel_values):
|
||||
x = self.patch_embeddings(pixel_values)
|
||||
# TODO: mask_token?
|
||||
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
||||
x = torch.cat((self.cls_token.to(device=x.device, dtype=x.dtype).expand(x.shape[0], -1, -1), x), dim=1)
|
||||
x = x + comfy.model_management.cast_to_device(self.position_embeddings, x.device, x.dtype)
|
||||
return x
|
||||
|
||||
|
||||
@@ -1345,28 +1345,52 @@ def sample_res_multistep_ancestral_cfg_pp(model, x, sigmas, extra_args=None, cal
|
||||
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=True)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
|
||||
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2., cfg_pp=False):
|
||||
"""Gradient-estimation sampler. Paper: https://openreview.net/pdf?id=o2ND9v0CeK"""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
old_d = None
|
||||
|
||||
uncond_denoised = None
|
||||
def post_cfg_function(args):
|
||||
nonlocal uncond_denoised
|
||||
uncond_denoised = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
if cfg_pp:
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if cfg_pp:
|
||||
d = to_d(x, sigmas[i], uncond_denoised)
|
||||
else:
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
dt = sigmas[i + 1] - sigmas[i]
|
||||
if i == 0:
|
||||
# Euler method
|
||||
if cfg_pp:
|
||||
x = denoised + d * sigmas[i + 1]
|
||||
else:
|
||||
x = x + d * dt
|
||||
else:
|
||||
# Gradient estimation
|
||||
if cfg_pp:
|
||||
d_bar = (ge_gamma - 1) * (d - old_d)
|
||||
x = denoised + d * sigmas[i + 1] + d_bar * dt
|
||||
else:
|
||||
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
|
||||
x = x + d_bar * dt
|
||||
old_d = d
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_gradient_estimation_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
|
||||
return sample_gradient_estimation(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, ge_gamma=ge_gamma, cfg_pp=True)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None, noise_scaler=None, max_stage=3):
|
||||
"""
|
||||
@@ -1422,3 +1446,101 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (sigmas[i + 1] ** 2 - sigmas[i] ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
|
||||
old_denoised = denoised
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
|
||||
'''
|
||||
SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 2
|
||||
Arxiv: https://arxiv.org/abs/2305.14267
|
||||
'''
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
inject_noise = eta > 0 and s_noise > 0
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
|
||||
h = t_next - t
|
||||
h_eta = h * (eta + 1)
|
||||
s = t + r * h
|
||||
fac = 1 / (2 * r)
|
||||
sigma_s = s.neg().exp()
|
||||
|
||||
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
|
||||
if inject_noise:
|
||||
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_2 = ((-2 * r * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
|
||||
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s), noise_sampler(sigma_s, sigmas[i + 1])
|
||||
|
||||
# Step 1
|
||||
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
|
||||
if inject_noise:
|
||||
x_2 = x_2 + sigma_s * (noise_coeff_1 * noise_1) * s_noise
|
||||
denoised_2 = model(x_2, sigma_s * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
denoised_d = (1 - fac) * denoised + fac * denoised_2
|
||||
x = (coeff_2 + 1) * x - coeff_2 * denoised_d
|
||||
if inject_noise:
|
||||
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
|
||||
'''
|
||||
SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 3
|
||||
Arxiv: https://arxiv.org/abs/2305.14267
|
||||
'''
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
inject_noise = eta > 0 and s_noise > 0
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
|
||||
h = t_next - t
|
||||
h_eta = h * (eta + 1)
|
||||
s_1 = t + r_1 * h
|
||||
s_2 = t + r_2 * h
|
||||
sigma_s_1, sigma_s_2 = s_1.neg().exp(), s_2.neg().exp()
|
||||
|
||||
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
|
||||
if inject_noise:
|
||||
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_2 = ((-2 * r_1 * h * eta).expm1() - (-2 * r_2 * h * eta).expm1()).sqrt()
|
||||
noise_coeff_3 = ((-2 * r_2 * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
|
||||
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
|
||||
|
||||
# Step 1
|
||||
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
|
||||
if inject_noise:
|
||||
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
|
||||
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
x_3 = (coeff_2 + 1) * x - coeff_2 * denoised + (r_2 / r_1) * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
|
||||
if inject_noise:
|
||||
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
|
||||
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
|
||||
|
||||
# Step 3
|
||||
x = (coeff_3 + 1) * x - coeff_3 * denoised + (1. / r_2) * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
|
||||
if inject_noise:
|
||||
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
|
||||
return x
|
||||
|
||||
183
comfy/ldm/chroma/layers.py
Normal file
183
comfy/ldm/chroma/layers.py
Normal file
@@ -0,0 +1,183 @@
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from comfy.ldm.flux.math import attention
|
||||
from comfy.ldm.flux.layers import (
|
||||
MLPEmbedder,
|
||||
RMSNorm,
|
||||
QKNorm,
|
||||
SelfAttention,
|
||||
ModulationOut,
|
||||
)
|
||||
|
||||
|
||||
|
||||
class ChromaModulationOut(ModulationOut):
|
||||
@classmethod
|
||||
def from_offset(cls, tensor: torch.Tensor, offset: int = 0) -> ModulationOut:
|
||||
return cls(
|
||||
shift=tensor[:, offset : offset + 1, :],
|
||||
scale=tensor[:, offset + 1 : offset + 2, :],
|
||||
gate=tensor[:, offset + 2 : offset + 3, :],
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
class Approximator(nn.Module):
|
||||
def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers = 5, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.in_proj = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
|
||||
self.norms = nn.ModuleList([RMSNorm(hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
|
||||
self.out_proj = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
# Get the device of the module (assumes all parameters are on the same device)
|
||||
return next(self.parameters()).device
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
x = self.in_proj(x)
|
||||
|
||||
for layer, norms in zip(self.layers, self.norms):
|
||||
x = x + layer(norms(x))
|
||||
|
||||
x = self.out_proj(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None):
|
||||
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = self.img_norm1(img)
|
||||
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = self.txt_norm1(txt)
|
||||
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
|
||||
# run actual attention
|
||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||
torch.cat((txt_k, img_k), dim=2),
|
||||
torch.cat((txt_v, img_v), dim=2),
|
||||
pe=pe, mask=attn_mask)
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
||||
|
||||
# calculate the img bloks
|
||||
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
||||
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
||||
|
||||
# calculate the txt bloks
|
||||
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
||||
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
|
||||
|
||||
return img, txt
|
||||
|
||||
|
||||
class SingleStreamBlock(nn.Module):
|
||||
"""
|
||||
A DiT block with parallel linear layers as described in
|
||||
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qk_scale: float = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_size
|
||||
self.num_heads = num_heads
|
||||
head_dim = hidden_size // num_heads
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
# qkv and mlp_in
|
||||
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
|
||||
# proj and mlp_out
|
||||
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
|
||||
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None) -> Tensor:
|
||||
mod = vec
|
||||
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
||||
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x += mod.gate * output
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
return x
|
||||
|
||||
|
||||
class LastLayer(nn.Module):
|
||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.linear = operations.Linear(hidden_size, out_channels, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
||||
shift, scale = vec
|
||||
shift = shift.squeeze(1)
|
||||
scale = scale.squeeze(1)
|
||||
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
||||
x = self.linear(x)
|
||||
return x
|
||||
271
comfy/ldm/chroma/model.py
Normal file
271
comfy/ldm/chroma/model.py
Normal file
@@ -0,0 +1,271 @@
|
||||
#Original code can be found on: https://github.com/black-forest-labs/flux
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from einops import rearrange, repeat
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
from comfy.ldm.flux.layers import (
|
||||
EmbedND,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
from .layers import (
|
||||
DoubleStreamBlock,
|
||||
LastLayer,
|
||||
SingleStreamBlock,
|
||||
Approximator,
|
||||
ChromaModulationOut,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ChromaParams:
|
||||
in_channels: int
|
||||
out_channels: int
|
||||
context_in_dim: int
|
||||
hidden_size: int
|
||||
mlp_ratio: float
|
||||
num_heads: int
|
||||
depth: int
|
||||
depth_single_blocks: int
|
||||
axes_dim: list
|
||||
theta: int
|
||||
patch_size: int
|
||||
qkv_bias: bool
|
||||
in_dim: int
|
||||
out_dim: int
|
||||
hidden_dim: int
|
||||
n_layers: int
|
||||
|
||||
|
||||
|
||||
|
||||
class Chroma(nn.Module):
|
||||
"""
|
||||
Transformer model for flow matching on sequences.
|
||||
"""
|
||||
|
||||
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
params = ChromaParams(**kwargs)
|
||||
self.params = params
|
||||
self.patch_size = params.patch_size
|
||||
self.in_channels = params.in_channels
|
||||
self.out_channels = params.out_channels
|
||||
if params.hidden_size % params.num_heads != 0:
|
||||
raise ValueError(
|
||||
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
||||
)
|
||||
pe_dim = params.hidden_size // params.num_heads
|
||||
if sum(params.axes_dim) != pe_dim:
|
||||
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
||||
self.hidden_size = params.hidden_size
|
||||
self.num_heads = params.num_heads
|
||||
self.in_dim = params.in_dim
|
||||
self.out_dim = params.out_dim
|
||||
self.hidden_dim = params.hidden_dim
|
||||
self.n_layers = params.n_layers
|
||||
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
|
||||
# set as nn identity for now, will overwrite it later.
|
||||
self.distilled_guidance_layer = Approximator(
|
||||
in_dim=self.in_dim,
|
||||
hidden_dim=self.hidden_dim,
|
||||
out_dim=self.out_dim,
|
||||
n_layers=self.n_layers,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
DoubleStreamBlock(
|
||||
self.hidden_size,
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
if final_layer:
|
||||
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.skip_mmdit = []
|
||||
self.skip_dit = []
|
||||
self.lite = False
|
||||
|
||||
def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0):
|
||||
# This function slices up the modulations tensor which has the following layout:
|
||||
# single : num_single_blocks * 3 elements
|
||||
# double_img : num_double_blocks * 6 elements
|
||||
# double_txt : num_double_blocks * 6 elements
|
||||
# final : 2 elements
|
||||
if block_type == "final":
|
||||
return (tensor[:, -2:-1, :], tensor[:, -1:, :])
|
||||
single_block_count = self.params.depth_single_blocks
|
||||
double_block_count = self.params.depth
|
||||
offset = 3 * idx
|
||||
if block_type == "single":
|
||||
return ChromaModulationOut.from_offset(tensor, offset)
|
||||
# Double block modulations are 6 elements so we double 3 * idx.
|
||||
offset *= 2
|
||||
if block_type in {"double_img", "double_txt"}:
|
||||
# Advance past the single block modulations.
|
||||
offset += 3 * single_block_count
|
||||
if block_type == "double_txt":
|
||||
# Advance past the double block img modulations.
|
||||
offset += 6 * double_block_count
|
||||
return (
|
||||
ChromaModulationOut.from_offset(tensor, offset),
|
||||
ChromaModulationOut.from_offset(tensor, offset + 3),
|
||||
)
|
||||
raise ValueError("Bad block_type")
|
||||
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
guidance: Tensor = None,
|
||||
control = None,
|
||||
transformer_options={},
|
||||
attn_mask: Tensor = None,
|
||||
) -> Tensor:
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
|
||||
# distilled vector guidance
|
||||
mod_index_length = 344
|
||||
distill_timestep = timestep_embedding(timesteps.detach().clone(), 16).to(img.device, img.dtype)
|
||||
# guidance = guidance *
|
||||
distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype)
|
||||
|
||||
# get all modulation index
|
||||
modulation_index = timestep_embedding(torch.arange(mod_index_length), 32).to(img.device, img.dtype)
|
||||
# we need to broadcast the modulation index here so each batch has all of the index
|
||||
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
|
||||
# and we need to broadcast timestep and guidance along too
|
||||
timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype)
|
||||
# then and only then we could concatenate it together
|
||||
input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype)
|
||||
|
||||
mod_vectors = self.distilled_guidance_layer(input_vec)
|
||||
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
if i not in self.skip_mmdit:
|
||||
double_mod = (
|
||||
self.get_modulations(mod_vectors, "double_img", idx=i),
|
||||
self.get_modulations(mod_vectors, "double_txt", idx=i),
|
||||
)
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"], out["txt"] = block(img=args["img"],
|
||||
txt=args["txt"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": img,
|
||||
"txt": txt,
|
||||
"vec": double_mod,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
{"original_block": block_wrap})
|
||||
txt = out["txt"]
|
||||
img = out["img"]
|
||||
else:
|
||||
img, txt = block(img=img,
|
||||
txt=txt,
|
||||
vec=double_mod,
|
||||
pe=pe,
|
||||
attn_mask=attn_mask)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
if i < len(control_i):
|
||||
add = control_i[i]
|
||||
if add is not None:
|
||||
img += add
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
for i, block in enumerate(self.single_blocks):
|
||||
if i not in self.skip_dit:
|
||||
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
|
||||
if ("single_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": img,
|
||||
"vec": single_mod,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
{"original_block": block_wrap})
|
||||
img = out["img"]
|
||||
else:
|
||||
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_o = control.get("output")
|
||||
if i < len(control_o):
|
||||
add = control_o[i]
|
||||
if add is not None:
|
||||
img[:, txt.shape[1] :, ...] += add
|
||||
|
||||
img = img[:, txt.shape[1] :, ...]
|
||||
final_mod = self.get_modulations(mod_vectors, "final")
|
||||
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = 2
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
|
||||
@@ -1,5 +1,6 @@
|
||||
import torch
|
||||
import comfy.ops
|
||||
import comfy.rmsnorm
|
||||
|
||||
|
||||
def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
|
||||
if padding_mode == "circular" and (torch.jit.is_tracing() or torch.jit.is_scripting()):
|
||||
@@ -11,20 +12,5 @@ def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
|
||||
|
||||
return torch.nn.functional.pad(img, pad, mode=padding_mode)
|
||||
|
||||
try:
|
||||
rms_norm_torch = torch.nn.functional.rms_norm
|
||||
except:
|
||||
rms_norm_torch = None
|
||||
|
||||
def rms_norm(x, weight=None, eps=1e-6):
|
||||
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
|
||||
if weight is None:
|
||||
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
|
||||
else:
|
||||
return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
|
||||
else:
|
||||
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
|
||||
if weight is None:
|
||||
return r
|
||||
else:
|
||||
return r * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)
|
||||
rms_norm = comfy.rmsnorm.rms_norm
|
||||
|
||||
@@ -23,7 +23,6 @@ from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
from torch import nn
|
||||
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
|
||||
@@ -37,11 +36,11 @@ def apply_rotary_pos_emb(
|
||||
return t_out
|
||||
|
||||
|
||||
def get_normalization(name: str, channels: int, weight_args={}):
|
||||
def get_normalization(name: str, channels: int, weight_args={}, operations=None):
|
||||
if name == "I":
|
||||
return nn.Identity()
|
||||
elif name == "R":
|
||||
return RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args)
|
||||
return operations.RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args)
|
||||
else:
|
||||
raise ValueError(f"Normalization {name} not found")
|
||||
|
||||
@@ -120,15 +119,15 @@ class Attention(nn.Module):
|
||||
|
||||
self.to_q = nn.Sequential(
|
||||
operations.Linear(query_dim, inner_dim, bias=qkv_bias, **weight_args),
|
||||
get_normalization(qkv_norm[0], norm_dim),
|
||||
get_normalization(qkv_norm[0], norm_dim, weight_args=weight_args, operations=operations),
|
||||
)
|
||||
self.to_k = nn.Sequential(
|
||||
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
|
||||
get_normalization(qkv_norm[1], norm_dim),
|
||||
get_normalization(qkv_norm[1], norm_dim, weight_args=weight_args, operations=operations),
|
||||
)
|
||||
self.to_v = nn.Sequential(
|
||||
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
|
||||
get_normalization(qkv_norm[2], norm_dim),
|
||||
get_normalization(qkv_norm[2], norm_dim, weight_args=weight_args, operations=operations),
|
||||
)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
|
||||
@@ -27,8 +27,6 @@ from torchvision import transforms
|
||||
from enum import Enum
|
||||
import logging
|
||||
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
|
||||
|
||||
from .blocks import (
|
||||
FinalLayer,
|
||||
GeneralDITTransformerBlock,
|
||||
@@ -195,7 +193,7 @@ class GeneralDIT(nn.Module):
|
||||
|
||||
if self.affline_emb_norm:
|
||||
logging.debug("Building affine embedding normalization layer")
|
||||
self.affline_norm = RMSNorm(model_channels, elementwise_affine=True, eps=1e-6)
|
||||
self.affline_norm = operations.RMSNorm(model_channels, elementwise_affine=True, eps=1e-6, device=device, dtype=dtype)
|
||||
else:
|
||||
self.affline_norm = nn.Identity()
|
||||
|
||||
|
||||
@@ -13,7 +13,6 @@ from comfy.ldm.modules.attention import optimized_attention
|
||||
from .layers import (
|
||||
FeedForward,
|
||||
PatchEmbed,
|
||||
RMSNorm,
|
||||
TimestepEmbedder,
|
||||
)
|
||||
|
||||
@@ -90,10 +89,10 @@ class AsymmetricAttention(nn.Module):
|
||||
|
||||
# Query and key normalization for stability.
|
||||
assert qk_norm
|
||||
self.q_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.k_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.q_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.k_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.q_norm_x = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
|
||||
self.k_norm_x = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
|
||||
self.q_norm_y = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
|
||||
self.k_norm_y = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
|
||||
|
||||
# Output layers. y features go back down from dim_x -> dim_y.
|
||||
self.proj_x = operations.Linear(dim_x, dim_x, bias=out_bias, device=device, dtype=dtype)
|
||||
|
||||
@@ -151,14 +151,3 @@ class PatchEmbed(nn.Module):
|
||||
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = torch.nn.Parameter(torch.empty(hidden_size, device=device, dtype=dtype))
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
def forward(self, x):
|
||||
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)
|
||||
|
||||
802
comfy/ldm/hidream/model.py
Normal file
802
comfy/ldm/hidream/model.py
Normal file
@@ -0,0 +1,802 @@
|
||||
from typing import Optional, Tuple, List
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import einops
|
||||
from einops import repeat
|
||||
|
||||
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
|
||||
import torch.nn.functional as F
|
||||
|
||||
from comfy.ldm.flux.math import apply_rope, rope
|
||||
from comfy.ldm.flux.layers import LastLayer
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.model_management
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py
|
||||
class EmbedND(nn.Module):
|
||||
def __init__(self, theta: int, axes_dim: List[int]):
|
||||
super().__init__()
|
||||
self.theta = theta
|
||||
self.axes_dim = axes_dim
|
||||
|
||||
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
||||
n_axes = ids.shape[-1]
|
||||
emb = torch.cat(
|
||||
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
||||
dim=-3,
|
||||
)
|
||||
return emb.unsqueeze(2)
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
patch_size=2,
|
||||
in_channels=4,
|
||||
out_channels=1024,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.patch_size = patch_size
|
||||
self.out_channels = out_channels
|
||||
self.proj = operations.Linear(in_channels * patch_size * patch_size, out_channels, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, latent):
|
||||
latent = self.proj(latent)
|
||||
return latent
|
||||
|
||||
|
||||
class PooledEmbed(nn.Module):
|
||||
def __init__(self, text_emb_dim, hidden_size, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.pooled_embedder = TimestepEmbedding(in_channels=text_emb_dim, time_embed_dim=hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, pooled_embed):
|
||||
return self.pooled_embedder(pooled_embed)
|
||||
|
||||
|
||||
class TimestepEmbed(nn.Module):
|
||||
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, timesteps, wdtype):
|
||||
t_emb = self.time_proj(timesteps).to(dtype=wdtype)
|
||||
t_emb = self.timestep_embedder(t_emb)
|
||||
return t_emb
|
||||
|
||||
|
||||
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
|
||||
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2])
|
||||
|
||||
|
||||
class HiDreamAttnProcessor_flashattn:
|
||||
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn,
|
||||
image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> torch.FloatTensor:
|
||||
dtype = image_tokens.dtype
|
||||
batch_size = image_tokens.shape[0]
|
||||
|
||||
query_i = attn.q_rms_norm(attn.to_q(image_tokens)).to(dtype=dtype)
|
||||
key_i = attn.k_rms_norm(attn.to_k(image_tokens)).to(dtype=dtype)
|
||||
value_i = attn.to_v(image_tokens)
|
||||
|
||||
inner_dim = key_i.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query_i = query_i.view(batch_size, -1, attn.heads, head_dim)
|
||||
key_i = key_i.view(batch_size, -1, attn.heads, head_dim)
|
||||
value_i = value_i.view(batch_size, -1, attn.heads, head_dim)
|
||||
if image_tokens_masks is not None:
|
||||
key_i = key_i * image_tokens_masks.view(batch_size, -1, 1, 1)
|
||||
|
||||
if not attn.single:
|
||||
query_t = attn.q_rms_norm_t(attn.to_q_t(text_tokens)).to(dtype=dtype)
|
||||
key_t = attn.k_rms_norm_t(attn.to_k_t(text_tokens)).to(dtype=dtype)
|
||||
value_t = attn.to_v_t(text_tokens)
|
||||
|
||||
query_t = query_t.view(batch_size, -1, attn.heads, head_dim)
|
||||
key_t = key_t.view(batch_size, -1, attn.heads, head_dim)
|
||||
value_t = value_t.view(batch_size, -1, attn.heads, head_dim)
|
||||
|
||||
num_image_tokens = query_i.shape[1]
|
||||
num_text_tokens = query_t.shape[1]
|
||||
query = torch.cat([query_i, query_t], dim=1)
|
||||
key = torch.cat([key_i, key_t], dim=1)
|
||||
value = torch.cat([value_i, value_t], dim=1)
|
||||
else:
|
||||
query = query_i
|
||||
key = key_i
|
||||
value = value_i
|
||||
|
||||
if query.shape[-1] == rope.shape[-3] * 2:
|
||||
query, key = apply_rope(query, key, rope)
|
||||
else:
|
||||
query_1, query_2 = query.chunk(2, dim=-1)
|
||||
key_1, key_2 = key.chunk(2, dim=-1)
|
||||
query_1, key_1 = apply_rope(query_1, key_1, rope)
|
||||
query = torch.cat([query_1, query_2], dim=-1)
|
||||
key = torch.cat([key_1, key_2], dim=-1)
|
||||
|
||||
hidden_states = attention(query, key, value)
|
||||
|
||||
if not attn.single:
|
||||
hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1)
|
||||
hidden_states_i = attn.to_out(hidden_states_i)
|
||||
hidden_states_t = attn.to_out_t(hidden_states_t)
|
||||
return hidden_states_i, hidden_states_t
|
||||
else:
|
||||
hidden_states = attn.to_out(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
class HiDreamAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
query_dim: int,
|
||||
heads: int = 8,
|
||||
dim_head: int = 64,
|
||||
upcast_attention: bool = False,
|
||||
upcast_softmax: bool = False,
|
||||
scale_qk: bool = True,
|
||||
eps: float = 1e-5,
|
||||
processor = None,
|
||||
out_dim: int = None,
|
||||
single: bool = False,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
# super(Attention, self).__init__()
|
||||
super().__init__()
|
||||
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
||||
self.query_dim = query_dim
|
||||
self.upcast_attention = upcast_attention
|
||||
self.upcast_softmax = upcast_softmax
|
||||
self.out_dim = out_dim if out_dim is not None else query_dim
|
||||
|
||||
self.scale_qk = scale_qk
|
||||
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
||||
|
||||
self.heads = out_dim // dim_head if out_dim is not None else heads
|
||||
self.sliceable_head_dim = heads
|
||||
self.single = single
|
||||
|
||||
linear_cls = operations.Linear
|
||||
self.linear_cls = linear_cls
|
||||
self.to_q = linear_cls(query_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
self.to_k = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
self.to_v = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
self.to_out = linear_cls(self.inner_dim, self.out_dim, dtype=dtype, device=device)
|
||||
self.q_rms_norm = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
|
||||
self.k_rms_norm = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
|
||||
|
||||
if not single:
|
||||
self.to_q_t = linear_cls(query_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
self.to_k_t = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
self.to_v_t = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
self.to_out_t = linear_cls(self.inner_dim, self.out_dim, dtype=dtype, device=device)
|
||||
self.q_rms_norm_t = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
|
||||
self.k_rms_norm_t = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
|
||||
|
||||
self.processor = processor
|
||||
|
||||
def forward(
|
||||
self,
|
||||
norm_image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: torch.FloatTensor = None,
|
||||
norm_text_tokens: torch.FloatTensor = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
) -> torch.Tensor:
|
||||
return self.processor(
|
||||
self,
|
||||
image_tokens = norm_image_tokens,
|
||||
image_tokens_masks = image_tokens_masks,
|
||||
text_tokens = norm_text_tokens,
|
||||
rope = rope,
|
||||
)
|
||||
|
||||
|
||||
class FeedForwardSwiGLU(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
hidden_dim: int,
|
||||
multiple_of: int = 256,
|
||||
ffn_dim_multiplier: Optional[float] = None,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
hidden_dim = int(2 * hidden_dim / 3)
|
||||
# custom dim factor multiplier
|
||||
if ffn_dim_multiplier is not None:
|
||||
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
||||
hidden_dim = multiple_of * (
|
||||
(hidden_dim + multiple_of - 1) // multiple_of
|
||||
)
|
||||
|
||||
self.w1 = operations.Linear(dim, hidden_dim, bias=False, dtype=dtype, device=device)
|
||||
self.w2 = operations.Linear(hidden_dim, dim, bias=False, dtype=dtype, device=device)
|
||||
self.w3 = operations.Linear(dim, hidden_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
return self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x))
|
||||
|
||||
|
||||
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
|
||||
class MoEGate(nn.Module):
|
||||
def __init__(self, embed_dim, num_routed_experts=4, num_activated_experts=2, aux_loss_alpha=0.01, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.top_k = num_activated_experts
|
||||
self.n_routed_experts = num_routed_experts
|
||||
|
||||
self.scoring_func = 'softmax'
|
||||
self.alpha = aux_loss_alpha
|
||||
self.seq_aux = False
|
||||
|
||||
# topk selection algorithm
|
||||
self.norm_topk_prob = False
|
||||
self.gating_dim = embed_dim
|
||||
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim), dtype=dtype, device=device))
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self) -> None:
|
||||
pass
|
||||
# import torch.nn.init as init
|
||||
# init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
||||
|
||||
def forward(self, hidden_states):
|
||||
bsz, seq_len, h = hidden_states.shape
|
||||
|
||||
### compute gating score
|
||||
hidden_states = hidden_states.view(-1, h)
|
||||
logits = F.linear(hidden_states, comfy.model_management.cast_to(self.weight, dtype=hidden_states.dtype, device=hidden_states.device), None)
|
||||
if self.scoring_func == 'softmax':
|
||||
scores = logits.softmax(dim=-1)
|
||||
else:
|
||||
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
|
||||
|
||||
### select top-k experts
|
||||
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
|
||||
|
||||
### norm gate to sum 1
|
||||
if self.top_k > 1 and self.norm_topk_prob:
|
||||
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
||||
topk_weight = topk_weight / denominator
|
||||
|
||||
aux_loss = None
|
||||
return topk_idx, topk_weight, aux_loss
|
||||
|
||||
|
||||
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
|
||||
class MOEFeedForwardSwiGLU(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
hidden_dim: int,
|
||||
num_routed_experts: int,
|
||||
num_activated_experts: int,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.shared_experts = FeedForwardSwiGLU(dim, hidden_dim // 2, dtype=dtype, device=device, operations=operations)
|
||||
self.experts = nn.ModuleList([FeedForwardSwiGLU(dim, hidden_dim, dtype=dtype, device=device, operations=operations) for i in range(num_routed_experts)])
|
||||
self.gate = MoEGate(
|
||||
embed_dim = dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.num_activated_experts = num_activated_experts
|
||||
|
||||
def forward(self, x):
|
||||
wtype = x.dtype
|
||||
identity = x
|
||||
orig_shape = x.shape
|
||||
topk_idx, topk_weight, aux_loss = self.gate(x)
|
||||
x = x.view(-1, x.shape[-1])
|
||||
flat_topk_idx = topk_idx.view(-1)
|
||||
if True: # self.training: # TODO: check which branch performs faster
|
||||
x = x.repeat_interleave(self.num_activated_experts, dim=0)
|
||||
y = torch.empty_like(x, dtype=wtype)
|
||||
for i, expert in enumerate(self.experts):
|
||||
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(dtype=wtype)
|
||||
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
||||
y = y.view(*orig_shape).to(dtype=wtype)
|
||||
#y = AddAuxiliaryLoss.apply(y, aux_loss)
|
||||
else:
|
||||
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
||||
y = y + self.shared_experts(identity)
|
||||
return y
|
||||
|
||||
@torch.no_grad()
|
||||
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
||||
expert_cache = torch.zeros_like(x)
|
||||
idxs = flat_expert_indices.argsort()
|
||||
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
|
||||
token_idxs = idxs // self.num_activated_experts
|
||||
for i, end_idx in enumerate(tokens_per_expert):
|
||||
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
|
||||
if start_idx == end_idx:
|
||||
continue
|
||||
expert = self.experts[i]
|
||||
exp_token_idx = token_idxs[start_idx:end_idx]
|
||||
expert_tokens = x[exp_token_idx]
|
||||
expert_out = expert(expert_tokens)
|
||||
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
||||
|
||||
# for fp16 and other dtype
|
||||
expert_cache = expert_cache.to(expert_out.dtype)
|
||||
expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum')
|
||||
return expert_cache
|
||||
|
||||
|
||||
class TextProjection(nn.Module):
|
||||
def __init__(self, in_features, hidden_size, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.linear = operations.Linear(in_features=in_features, out_features=hidden_size, bias=False, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, caption):
|
||||
hidden_states = self.linear(caption)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BlockType:
|
||||
TransformerBlock = 1
|
||||
SingleTransformerBlock = 2
|
||||
|
||||
|
||||
class HiDreamImageSingleTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
num_routed_experts: int = 4,
|
||||
num_activated_experts: int = 2,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
# 1. Attention
|
||||
self.norm1_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
|
||||
self.attn1 = HiDreamAttention(
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
processor = HiDreamAttnProcessor_flashattn(),
|
||||
single = True,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
# 3. Feed-forward
|
||||
self.norm3_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
|
||||
if num_routed_experts > 0:
|
||||
self.ff_i = MOEFeedForwardSwiGLU(
|
||||
dim = dim,
|
||||
hidden_dim = 4 * dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
else:
|
||||
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
adaln_input: Optional[torch.FloatTensor] = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
|
||||
) -> torch.FloatTensor:
|
||||
wtype = image_tokens.dtype
|
||||
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
|
||||
self.adaLN_modulation(adaln_input)[:,None].chunk(6, dim=-1)
|
||||
|
||||
# 1. MM-Attention
|
||||
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
|
||||
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
|
||||
attn_output_i = self.attn1(
|
||||
norm_image_tokens,
|
||||
image_tokens_masks,
|
||||
rope = rope,
|
||||
)
|
||||
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
||||
|
||||
# 2. Feed-forward
|
||||
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
|
||||
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
|
||||
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens.to(dtype=wtype))
|
||||
image_tokens = ff_output_i + image_tokens
|
||||
return image_tokens
|
||||
|
||||
|
||||
class HiDreamImageTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
num_routed_experts: int = 4,
|
||||
num_activated_experts: int = 2,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(dim, 12 * dim, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
# nn.init.zeros_(self.adaLN_modulation[1].weight)
|
||||
# nn.init.zeros_(self.adaLN_modulation[1].bias)
|
||||
|
||||
# 1. Attention
|
||||
self.norm1_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
|
||||
self.norm1_t = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
|
||||
self.attn1 = HiDreamAttention(
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
processor = HiDreamAttnProcessor_flashattn(),
|
||||
single = False,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
# 3. Feed-forward
|
||||
self.norm3_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
|
||||
if num_routed_experts > 0:
|
||||
self.ff_i = MOEFeedForwardSwiGLU(
|
||||
dim = dim,
|
||||
hidden_dim = 4 * dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
else:
|
||||
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
|
||||
self.norm3_t = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
||||
self.ff_t = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
adaln_input: Optional[torch.FloatTensor] = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
) -> torch.FloatTensor:
|
||||
wtype = image_tokens.dtype
|
||||
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
|
||||
shift_msa_t, scale_msa_t, gate_msa_t, shift_mlp_t, scale_mlp_t, gate_mlp_t = \
|
||||
self.adaLN_modulation(adaln_input)[:,None].chunk(12, dim=-1)
|
||||
|
||||
# 1. MM-Attention
|
||||
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
|
||||
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
|
||||
norm_text_tokens = self.norm1_t(text_tokens).to(dtype=wtype)
|
||||
norm_text_tokens = norm_text_tokens * (1 + scale_msa_t) + shift_msa_t
|
||||
|
||||
attn_output_i, attn_output_t = self.attn1(
|
||||
norm_image_tokens,
|
||||
image_tokens_masks,
|
||||
norm_text_tokens,
|
||||
rope = rope,
|
||||
)
|
||||
|
||||
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
||||
text_tokens = gate_msa_t * attn_output_t + text_tokens
|
||||
|
||||
# 2. Feed-forward
|
||||
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
|
||||
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
|
||||
norm_text_tokens = self.norm3_t(text_tokens).to(dtype=wtype)
|
||||
norm_text_tokens = norm_text_tokens * (1 + scale_mlp_t) + shift_mlp_t
|
||||
|
||||
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens)
|
||||
ff_output_t = gate_mlp_t * self.ff_t(norm_text_tokens)
|
||||
image_tokens = ff_output_i + image_tokens
|
||||
text_tokens = ff_output_t + text_tokens
|
||||
return image_tokens, text_tokens
|
||||
|
||||
|
||||
class HiDreamImageBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
num_routed_experts: int = 4,
|
||||
num_activated_experts: int = 2,
|
||||
block_type: BlockType = BlockType.TransformerBlock,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
block_classes = {
|
||||
BlockType.TransformerBlock: HiDreamImageTransformerBlock,
|
||||
BlockType.SingleTransformerBlock: HiDreamImageSingleTransformerBlock,
|
||||
}
|
||||
self.block = block_classes[block_type](
|
||||
dim,
|
||||
num_attention_heads,
|
||||
attention_head_dim,
|
||||
num_routed_experts,
|
||||
num_activated_experts,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
adaln_input: torch.FloatTensor = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
) -> torch.FloatTensor:
|
||||
return self.block(
|
||||
image_tokens,
|
||||
image_tokens_masks,
|
||||
text_tokens,
|
||||
adaln_input,
|
||||
rope,
|
||||
)
|
||||
|
||||
|
||||
class HiDreamImageTransformer2DModel(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: Optional[int] = None,
|
||||
in_channels: int = 64,
|
||||
out_channels: Optional[int] = None,
|
||||
num_layers: int = 16,
|
||||
num_single_layers: int = 32,
|
||||
attention_head_dim: int = 128,
|
||||
num_attention_heads: int = 20,
|
||||
caption_channels: List[int] = None,
|
||||
text_emb_dim: int = 2048,
|
||||
num_routed_experts: int = 4,
|
||||
num_activated_experts: int = 2,
|
||||
axes_dims_rope: Tuple[int, int] = (32, 32),
|
||||
max_resolution: Tuple[int, int] = (128, 128),
|
||||
llama_layers: List[int] = None,
|
||||
image_model=None,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
self.patch_size = patch_size
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.attention_head_dim = attention_head_dim
|
||||
self.num_layers = num_layers
|
||||
self.num_single_layers = num_single_layers
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
self.out_channels = out_channels or in_channels
|
||||
self.inner_dim = self.num_attention_heads * self.attention_head_dim
|
||||
self.llama_layers = llama_layers
|
||||
|
||||
self.t_embedder = TimestepEmbed(self.inner_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.p_embedder = PooledEmbed(text_emb_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.x_embedder = PatchEmbed(
|
||||
patch_size = patch_size,
|
||||
in_channels = in_channels,
|
||||
out_channels = self.inner_dim,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.pe_embedder = EmbedND(theta=10000, axes_dim=axes_dims_rope)
|
||||
|
||||
self.double_stream_blocks = nn.ModuleList(
|
||||
[
|
||||
HiDreamImageBlock(
|
||||
dim = self.inner_dim,
|
||||
num_attention_heads = self.num_attention_heads,
|
||||
attention_head_dim = self.attention_head_dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
block_type = BlockType.TransformerBlock,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for i in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_stream_blocks = nn.ModuleList(
|
||||
[
|
||||
HiDreamImageBlock(
|
||||
dim = self.inner_dim,
|
||||
num_attention_heads = self.num_attention_heads,
|
||||
attention_head_dim = self.attention_head_dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
block_type = BlockType.SingleTransformerBlock,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for i in range(self.num_single_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.final_layer = LastLayer(self.inner_dim, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
caption_channels = [caption_channels[1], ] * (num_layers + num_single_layers) + [caption_channels[0], ]
|
||||
caption_projection = []
|
||||
for caption_channel in caption_channels:
|
||||
caption_projection.append(TextProjection(in_features=caption_channel, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations))
|
||||
self.caption_projection = nn.ModuleList(caption_projection)
|
||||
self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size)
|
||||
|
||||
def expand_timesteps(self, timesteps, batch_size, device):
|
||||
if not torch.is_tensor(timesteps):
|
||||
is_mps = device.type == "mps"
|
||||
if isinstance(timesteps, float):
|
||||
dtype = torch.float32 if is_mps else torch.float64
|
||||
else:
|
||||
dtype = torch.int32 if is_mps else torch.int64
|
||||
timesteps = torch.tensor([timesteps], dtype=dtype, device=device)
|
||||
elif len(timesteps.shape) == 0:
|
||||
timesteps = timesteps[None].to(device)
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timesteps = timesteps.expand(batch_size)
|
||||
return timesteps
|
||||
|
||||
def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]]) -> List[torch.Tensor]:
|
||||
x_arr = []
|
||||
for i, img_size in enumerate(img_sizes):
|
||||
pH, pW = img_size
|
||||
x_arr.append(
|
||||
einops.rearrange(x[i, :pH*pW].reshape(1, pH, pW, -1), 'B H W (p1 p2 C) -> B C (H p1) (W p2)',
|
||||
p1=self.patch_size, p2=self.patch_size)
|
||||
)
|
||||
x = torch.cat(x_arr, dim=0)
|
||||
return x
|
||||
|
||||
def patchify(self, x, max_seq, img_sizes=None):
|
||||
pz2 = self.patch_size * self.patch_size
|
||||
if isinstance(x, torch.Tensor):
|
||||
B = x.shape[0]
|
||||
device = x.device
|
||||
dtype = x.dtype
|
||||
else:
|
||||
B = len(x)
|
||||
device = x[0].device
|
||||
dtype = x[0].dtype
|
||||
x_masks = torch.zeros((B, max_seq), dtype=dtype, device=device)
|
||||
|
||||
if img_sizes is not None:
|
||||
for i, img_size in enumerate(img_sizes):
|
||||
x_masks[i, 0:img_size[0] * img_size[1]] = 1
|
||||
x = einops.rearrange(x, 'B C S p -> B S (p C)', p=pz2)
|
||||
elif isinstance(x, torch.Tensor):
|
||||
pH, pW = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size
|
||||
x = einops.rearrange(x, 'B C (H p1) (W p2) -> B (H W) (p1 p2 C)', p1=self.patch_size, p2=self.patch_size)
|
||||
img_sizes = [[pH, pW]] * B
|
||||
x_masks = None
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return x, x_masks, img_sizes
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
t: torch.Tensor,
|
||||
y: Optional[torch.Tensor] = None,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states_llama3=None,
|
||||
image_cond=None,
|
||||
control = None,
|
||||
transformer_options = {},
|
||||
) -> torch.Tensor:
|
||||
bs, c, h, w = x.shape
|
||||
if image_cond is not None:
|
||||
x = torch.cat([x, image_cond], dim=-1)
|
||||
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
||||
timesteps = t
|
||||
pooled_embeds = y
|
||||
T5_encoder_hidden_states = context
|
||||
|
||||
img_sizes = None
|
||||
|
||||
# spatial forward
|
||||
batch_size = hidden_states.shape[0]
|
||||
hidden_states_type = hidden_states.dtype
|
||||
|
||||
# 0. time
|
||||
timesteps = self.expand_timesteps(timesteps, batch_size, hidden_states.device)
|
||||
timesteps = self.t_embedder(timesteps, hidden_states_type)
|
||||
p_embedder = self.p_embedder(pooled_embeds)
|
||||
adaln_input = timesteps + p_embedder
|
||||
|
||||
hidden_states, image_tokens_masks, img_sizes = self.patchify(hidden_states, self.max_seq, img_sizes)
|
||||
if image_tokens_masks is None:
|
||||
pH, pW = img_sizes[0]
|
||||
img_ids = torch.zeros(pH, pW, 3, device=hidden_states.device)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH, device=hidden_states.device)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW, device=hidden_states.device)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
|
||||
hidden_states = self.x_embedder(hidden_states)
|
||||
|
||||
# T5_encoder_hidden_states = encoder_hidden_states[0]
|
||||
encoder_hidden_states = encoder_hidden_states_llama3.movedim(1, 0)
|
||||
encoder_hidden_states = [encoder_hidden_states[k] for k in self.llama_layers]
|
||||
|
||||
if self.caption_projection is not None:
|
||||
new_encoder_hidden_states = []
|
||||
for i, enc_hidden_state in enumerate(encoder_hidden_states):
|
||||
enc_hidden_state = self.caption_projection[i](enc_hidden_state)
|
||||
enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1])
|
||||
new_encoder_hidden_states.append(enc_hidden_state)
|
||||
encoder_hidden_states = new_encoder_hidden_states
|
||||
T5_encoder_hidden_states = self.caption_projection[-1](T5_encoder_hidden_states)
|
||||
T5_encoder_hidden_states = T5_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
||||
encoder_hidden_states.append(T5_encoder_hidden_states)
|
||||
|
||||
txt_ids = torch.zeros(
|
||||
batch_size,
|
||||
encoder_hidden_states[-1].shape[1] + encoder_hidden_states[-2].shape[1] + encoder_hidden_states[0].shape[1],
|
||||
3,
|
||||
device=img_ids.device, dtype=img_ids.dtype
|
||||
)
|
||||
ids = torch.cat((img_ids, txt_ids), dim=1)
|
||||
rope = self.pe_embedder(ids)
|
||||
|
||||
# 2. Blocks
|
||||
block_id = 0
|
||||
initial_encoder_hidden_states = torch.cat([encoder_hidden_states[-1], encoder_hidden_states[-2]], dim=1)
|
||||
initial_encoder_hidden_states_seq_len = initial_encoder_hidden_states.shape[1]
|
||||
for bid, block in enumerate(self.double_stream_blocks):
|
||||
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
||||
cur_encoder_hidden_states = torch.cat([initial_encoder_hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
||||
hidden_states, initial_encoder_hidden_states = block(
|
||||
image_tokens = hidden_states,
|
||||
image_tokens_masks = image_tokens_masks,
|
||||
text_tokens = cur_encoder_hidden_states,
|
||||
adaln_input = adaln_input,
|
||||
rope = rope,
|
||||
)
|
||||
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
|
||||
block_id += 1
|
||||
|
||||
image_tokens_seq_len = hidden_states.shape[1]
|
||||
hidden_states = torch.cat([hidden_states, initial_encoder_hidden_states], dim=1)
|
||||
hidden_states_seq_len = hidden_states.shape[1]
|
||||
if image_tokens_masks is not None:
|
||||
encoder_attention_mask_ones = torch.ones(
|
||||
(batch_size, initial_encoder_hidden_states.shape[1] + cur_llama31_encoder_hidden_states.shape[1]),
|
||||
device=image_tokens_masks.device, dtype=image_tokens_masks.dtype
|
||||
)
|
||||
image_tokens_masks = torch.cat([image_tokens_masks, encoder_attention_mask_ones], dim=1)
|
||||
|
||||
for bid, block in enumerate(self.single_stream_blocks):
|
||||
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
||||
hidden_states = torch.cat([hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
||||
hidden_states = block(
|
||||
image_tokens=hidden_states,
|
||||
image_tokens_masks=image_tokens_masks,
|
||||
text_tokens=None,
|
||||
adaln_input=adaln_input,
|
||||
rope=rope,
|
||||
)
|
||||
hidden_states = hidden_states[:, :hidden_states_seq_len]
|
||||
block_id += 1
|
||||
|
||||
hidden_states = hidden_states[:, :image_tokens_seq_len, ...]
|
||||
output = self.final_layer(hidden_states, adaln_input)
|
||||
output = self.unpatchify(output, img_sizes)
|
||||
return -output[:, :, :h, :w]
|
||||
@@ -3,7 +3,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import comfy.ops
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed
|
||||
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
|
||||
from torch.utils import checkpoint
|
||||
|
||||
@@ -51,7 +51,7 @@ class HunYuanDiTBlock(nn.Module):
|
||||
if norm_type == "layer":
|
||||
norm_layer = operations.LayerNorm
|
||||
elif norm_type == "rms":
|
||||
norm_layer = RMSNorm
|
||||
norm_layer = operations.RMSNorm
|
||||
else:
|
||||
raise ValueError(f"Unknown norm_type: {norm_type}")
|
||||
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import comfy.ldm.modules.attention
|
||||
from comfy.ldm.genmo.joint_model.layers import RMSNorm
|
||||
import comfy.ldm.common_dit
|
||||
from einops import rearrange
|
||||
import math
|
||||
@@ -262,8 +261,8 @@ class CrossAttention(nn.Module):
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.q_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.k_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.q_norm = operations.RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.k_norm = operations.RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
@@ -8,7 +8,7 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, RMSNorm
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder
|
||||
from comfy.ldm.modules.attention import optimized_attention_masked
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
|
||||
@@ -64,8 +64,8 @@ class JointAttention(nn.Module):
|
||||
)
|
||||
|
||||
if qk_norm:
|
||||
self.q_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
|
||||
self.k_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
|
||||
self.q_norm = operation_settings.get("operations").RMSNorm(self.head_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.k_norm = operation_settings.get("operations").RMSNorm(self.head_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
else:
|
||||
self.q_norm = self.k_norm = nn.Identity()
|
||||
|
||||
@@ -242,11 +242,11 @@ class JointTransformerBlock(nn.Module):
|
||||
operation_settings=operation_settings,
|
||||
)
|
||||
self.layer_id = layer_id
|
||||
self.attention_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
|
||||
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
|
||||
self.attention_norm1 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.ffn_norm1 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
self.attention_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
|
||||
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
|
||||
self.attention_norm2 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.ffn_norm2 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
self.modulation = modulation
|
||||
if modulation:
|
||||
@@ -431,7 +431,7 @@ class NextDiT(nn.Module):
|
||||
|
||||
self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings)
|
||||
self.cap_embedder = nn.Sequential(
|
||||
RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, **operation_settings),
|
||||
operation_settings.get("operations").RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
|
||||
operation_settings.get("operations").Linear(
|
||||
cap_feat_dim,
|
||||
dim,
|
||||
@@ -457,7 +457,7 @@ class NextDiT(nn.Module):
|
||||
for layer_id in range(n_layers)
|
||||
]
|
||||
)
|
||||
self.norm_final = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
|
||||
self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings)
|
||||
|
||||
assert (dim // n_heads) == sum(axes_dims)
|
||||
|
||||
@@ -489,7 +489,17 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
|
||||
if mask.ndim == 3:
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
try:
|
||||
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
|
||||
except Exception as e:
|
||||
logging.error("Error running sage attention: {}, using pytorch attention instead.".format(e))
|
||||
if tensor_layout == "NHD":
|
||||
q, k, v = map(
|
||||
lambda t: t.transpose(1, 2),
|
||||
(q, k, v),
|
||||
)
|
||||
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape)
|
||||
|
||||
if tensor_layout == "HND":
|
||||
if not skip_output_reshape:
|
||||
out = (
|
||||
@@ -837,6 +847,7 @@ class SpatialTransformer(nn.Module):
|
||||
if not isinstance(context, list):
|
||||
context = [context] * len(self.transformer_blocks)
|
||||
b, c, h, w = x.shape
|
||||
transformer_options["activations_shape"] = list(x.shape)
|
||||
x_in = x
|
||||
x = self.norm(x)
|
||||
if not self.use_linear:
|
||||
@@ -952,6 +963,7 @@ class SpatialVideoTransformer(SpatialTransformer):
|
||||
transformer_options={}
|
||||
) -> torch.Tensor:
|
||||
_, _, h, w = x.shape
|
||||
transformer_options["activations_shape"] = list(x.shape)
|
||||
x_in = x
|
||||
spatial_context = None
|
||||
if exists(context):
|
||||
|
||||
@@ -9,7 +9,6 @@ from einops import repeat
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
from comfy.ldm.flux.math import apply_rope
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
|
||||
import comfy.ldm.common_dit
|
||||
import comfy.model_management
|
||||
|
||||
@@ -49,8 +48,8 @@ class WanSelfAttention(nn.Module):
|
||||
self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.norm_q = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
self.norm_k = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
self.norm_q = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
self.norm_k = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
|
||||
def forward(self, x, freqs):
|
||||
r"""
|
||||
@@ -83,7 +82,7 @@ class WanSelfAttention(nn.Module):
|
||||
|
||||
class WanT2VCrossAttention(WanSelfAttention):
|
||||
|
||||
def forward(self, x, context):
|
||||
def forward(self, x, context, **kwargs):
|
||||
r"""
|
||||
Args:
|
||||
x(Tensor): Shape [B, L1, C]
|
||||
@@ -114,16 +113,16 @@ class WanI2VCrossAttention(WanSelfAttention):
|
||||
self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
# self.alpha = nn.Parameter(torch.zeros((1, )))
|
||||
self.norm_k_img = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
self.norm_k_img = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
|
||||
def forward(self, x, context):
|
||||
def forward(self, x, context, context_img_len):
|
||||
r"""
|
||||
Args:
|
||||
x(Tensor): Shape [B, L1, C]
|
||||
context(Tensor): Shape [B, L2, C]
|
||||
"""
|
||||
context_img = context[:, :257]
|
||||
context = context[:, 257:]
|
||||
context_img = context[:, :context_img_len]
|
||||
context = context[:, context_img_len:]
|
||||
|
||||
# compute query, key, value
|
||||
q = self.norm_q(self.q(x))
|
||||
@@ -193,6 +192,7 @@ class WanAttentionBlock(nn.Module):
|
||||
e,
|
||||
freqs,
|
||||
context,
|
||||
context_img_len=257,
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
@@ -213,12 +213,40 @@ class WanAttentionBlock(nn.Module):
|
||||
x = x + y * e[2]
|
||||
|
||||
# cross-attention & ffn
|
||||
x = x + self.cross_attn(self.norm3(x), context)
|
||||
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len)
|
||||
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
|
||||
x = x + y * e[5]
|
||||
return x
|
||||
|
||||
|
||||
class VaceWanAttentionBlock(WanAttentionBlock):
|
||||
def __init__(
|
||||
self,
|
||||
cross_attn_type,
|
||||
dim,
|
||||
ffn_dim,
|
||||
num_heads,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=False,
|
||||
eps=1e-6,
|
||||
block_id=0,
|
||||
operation_settings={}
|
||||
):
|
||||
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
|
||||
self.block_id = block_id
|
||||
if block_id == 0:
|
||||
self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, c, x, **kwargs):
|
||||
if self.block_id == 0:
|
||||
c = self.before_proj(c) + x
|
||||
c = super().forward(c, **kwargs)
|
||||
c_skip = self.after_proj(c)
|
||||
return c_skip, c
|
||||
|
||||
|
||||
class Head(nn.Module):
|
||||
|
||||
def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}):
|
||||
@@ -250,7 +278,7 @@ class Head(nn.Module):
|
||||
|
||||
class MLPProj(torch.nn.Module):
|
||||
|
||||
def __init__(self, in_dim, out_dim, operation_settings={}):
|
||||
def __init__(self, in_dim, out_dim, flf_pos_embed_token_number=None, operation_settings={}):
|
||||
super().__init__()
|
||||
|
||||
self.proj = torch.nn.Sequential(
|
||||
@@ -258,7 +286,15 @@ class MLPProj(torch.nn.Module):
|
||||
torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
|
||||
operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
||||
|
||||
if flf_pos_embed_token_number is not None:
|
||||
self.emb_pos = nn.Parameter(torch.empty((1, flf_pos_embed_token_number, in_dim), device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
||||
else:
|
||||
self.emb_pos = None
|
||||
|
||||
def forward(self, image_embeds):
|
||||
if self.emb_pos is not None:
|
||||
image_embeds = image_embeds[:, :self.emb_pos.shape[1]] + comfy.model_management.cast_to(self.emb_pos[:, :image_embeds.shape[1]], dtype=image_embeds.dtype, device=image_embeds.device)
|
||||
|
||||
clip_extra_context_tokens = self.proj(image_embeds)
|
||||
return clip_extra_context_tokens
|
||||
|
||||
@@ -284,6 +320,7 @@ class WanModel(torch.nn.Module):
|
||||
qk_norm=True,
|
||||
cross_attn_norm=True,
|
||||
eps=1e-6,
|
||||
flf_pos_embed_token_number=None,
|
||||
image_model=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
@@ -373,7 +410,7 @@ class WanModel(torch.nn.Module):
|
||||
self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)])
|
||||
|
||||
if model_type == 'i2v':
|
||||
self.img_emb = MLPProj(1280, dim, operation_settings=operation_settings)
|
||||
self.img_emb = MLPProj(1280, dim, flf_pos_embed_token_number=flf_pos_embed_token_number, operation_settings=operation_settings)
|
||||
else:
|
||||
self.img_emb = None
|
||||
|
||||
@@ -385,6 +422,7 @@ class WanModel(torch.nn.Module):
|
||||
clip_fea=None,
|
||||
freqs=None,
|
||||
transformer_options={},
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Forward pass through the diffusion model
|
||||
@@ -420,9 +458,12 @@ class WanModel(torch.nn.Module):
|
||||
# context
|
||||
context = self.text_embedding(context)
|
||||
|
||||
if clip_fea is not None and self.img_emb is not None:
|
||||
context_img_len = None
|
||||
if clip_fea is not None:
|
||||
if self.img_emb is not None:
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
context_img_len = clip_fea.shape[-2]
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
@@ -430,12 +471,12 @@ class WanModel(torch.nn.Module):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, e=e0, freqs=freqs, context=context)
|
||||
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
@@ -458,7 +499,7 @@ class WanModel(torch.nn.Module):
|
||||
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
|
||||
|
||||
freqs = self.rope_embedder(img_ids).movedim(1, 2)
|
||||
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options)[:, :, :t, :h, :w]
|
||||
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
|
||||
|
||||
def unpatchify(self, x, grid_sizes):
|
||||
r"""
|
||||
@@ -483,3 +524,116 @@ class WanModel(torch.nn.Module):
|
||||
u = torch.einsum('bfhwpqrc->bcfphqwr', u)
|
||||
u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)])
|
||||
return u
|
||||
|
||||
|
||||
class VaceWanModel(WanModel):
|
||||
r"""
|
||||
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model_type='vace',
|
||||
patch_size=(1, 2, 2),
|
||||
text_len=512,
|
||||
in_dim=16,
|
||||
dim=2048,
|
||||
ffn_dim=8192,
|
||||
freq_dim=256,
|
||||
text_dim=4096,
|
||||
out_dim=16,
|
||||
num_heads=16,
|
||||
num_layers=32,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=True,
|
||||
eps=1e-6,
|
||||
flf_pos_embed_token_number=None,
|
||||
image_model=None,
|
||||
vace_layers=None,
|
||||
vace_in_dim=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
|
||||
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
|
||||
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
|
||||
|
||||
# Vace
|
||||
if vace_layers is not None:
|
||||
self.vace_layers = vace_layers
|
||||
self.vace_in_dim = vace_in_dim
|
||||
# vace blocks
|
||||
self.vace_blocks = nn.ModuleList([
|
||||
VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm, self.cross_attn_norm, self.eps, block_id=i, operation_settings=operation_settings)
|
||||
for i in range(self.vace_layers)
|
||||
])
|
||||
|
||||
self.vace_layers_mapping = {i: n for n, i in enumerate(range(0, self.num_layers, self.num_layers // self.vace_layers))}
|
||||
# vace patch embeddings
|
||||
self.vace_patch_embedding = operations.Conv3d(
|
||||
self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size, device=device, dtype=torch.float32
|
||||
)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
x,
|
||||
t,
|
||||
context,
|
||||
vace_context,
|
||||
vace_strength=1.0,
|
||||
clip_fea=None,
|
||||
freqs=None,
|
||||
transformer_options={},
|
||||
**kwargs,
|
||||
):
|
||||
# embeddings
|
||||
x = self.patch_embedding(x.float()).to(x.dtype)
|
||||
grid_sizes = x.shape[2:]
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
|
||||
# time embeddings
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
|
||||
# context
|
||||
context = self.text_embedding(context)
|
||||
|
||||
context_img_len = None
|
||||
if clip_fea is not None:
|
||||
if self.img_emb is not None:
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
context_img_len = clip_fea.shape[-2]
|
||||
|
||||
c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype)
|
||||
c = c.flatten(2).transpose(1, 2)
|
||||
|
||||
# arguments
|
||||
x_orig = x
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
||||
|
||||
ii = self.vace_layers_mapping.get(i, None)
|
||||
if ii is not None:
|
||||
c_skip, c = self.vace_blocks[ii](c, x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
||||
x += c_skip * vace_strength
|
||||
del c_skip
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
|
||||
328
comfy/lora.py
328
comfy/lora.py
@@ -20,6 +20,7 @@ from __future__ import annotations
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
import comfy.model_base
|
||||
import comfy.weight_adapter as weight_adapter
|
||||
import logging
|
||||
import torch
|
||||
|
||||
@@ -49,139 +50,12 @@ def load_lora(lora, to_load, log_missing=True):
|
||||
dora_scale = lora[dora_scale_name]
|
||||
loaded_keys.add(dora_scale_name)
|
||||
|
||||
reshape_name = "{}.reshape_weight".format(x)
|
||||
reshape = None
|
||||
if reshape_name in lora.keys():
|
||||
try:
|
||||
reshape = lora[reshape_name].tolist()
|
||||
loaded_keys.add(reshape_name)
|
||||
except:
|
||||
pass
|
||||
|
||||
regular_lora = "{}.lora_up.weight".format(x)
|
||||
diffusers_lora = "{}_lora.up.weight".format(x)
|
||||
diffusers2_lora = "{}.lora_B.weight".format(x)
|
||||
diffusers3_lora = "{}.lora.up.weight".format(x)
|
||||
mochi_lora = "{}.lora_B".format(x)
|
||||
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
||||
A_name = None
|
||||
|
||||
if regular_lora in lora.keys():
|
||||
A_name = regular_lora
|
||||
B_name = "{}.lora_down.weight".format(x)
|
||||
mid_name = "{}.lora_mid.weight".format(x)
|
||||
elif diffusers_lora in lora.keys():
|
||||
A_name = diffusers_lora
|
||||
B_name = "{}_lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers2_lora in lora.keys():
|
||||
A_name = diffusers2_lora
|
||||
B_name = "{}.lora_A.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers3_lora in lora.keys():
|
||||
A_name = diffusers3_lora
|
||||
B_name = "{}.lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif mochi_lora in lora.keys():
|
||||
A_name = mochi_lora
|
||||
B_name = "{}.lora_A".format(x)
|
||||
mid_name = None
|
||||
elif transformers_lora in lora.keys():
|
||||
A_name = transformers_lora
|
||||
B_name ="{}.lora_linear_layer.down.weight".format(x)
|
||||
mid_name = None
|
||||
|
||||
if A_name is not None:
|
||||
mid = None
|
||||
if mid_name is not None and mid_name in lora.keys():
|
||||
mid = lora[mid_name]
|
||||
loaded_keys.add(mid_name)
|
||||
patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape))
|
||||
loaded_keys.add(A_name)
|
||||
loaded_keys.add(B_name)
|
||||
|
||||
|
||||
######## loha
|
||||
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
||||
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
||||
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
||||
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
||||
hada_t1_name = "{}.hada_t1".format(x)
|
||||
hada_t2_name = "{}.hada_t2".format(x)
|
||||
if hada_w1_a_name in lora.keys():
|
||||
hada_t1 = None
|
||||
hada_t2 = None
|
||||
if hada_t1_name in lora.keys():
|
||||
hada_t1 = lora[hada_t1_name]
|
||||
hada_t2 = lora[hada_t2_name]
|
||||
loaded_keys.add(hada_t1_name)
|
||||
loaded_keys.add(hada_t2_name)
|
||||
|
||||
patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale))
|
||||
loaded_keys.add(hada_w1_a_name)
|
||||
loaded_keys.add(hada_w1_b_name)
|
||||
loaded_keys.add(hada_w2_a_name)
|
||||
loaded_keys.add(hada_w2_b_name)
|
||||
|
||||
|
||||
######## lokr
|
||||
lokr_w1_name = "{}.lokr_w1".format(x)
|
||||
lokr_w2_name = "{}.lokr_w2".format(x)
|
||||
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
||||
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
||||
lokr_t2_name = "{}.lokr_t2".format(x)
|
||||
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
||||
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
||||
|
||||
lokr_w1 = None
|
||||
if lokr_w1_name in lora.keys():
|
||||
lokr_w1 = lora[lokr_w1_name]
|
||||
loaded_keys.add(lokr_w1_name)
|
||||
|
||||
lokr_w2 = None
|
||||
if lokr_w2_name in lora.keys():
|
||||
lokr_w2 = lora[lokr_w2_name]
|
||||
loaded_keys.add(lokr_w2_name)
|
||||
|
||||
lokr_w1_a = None
|
||||
if lokr_w1_a_name in lora.keys():
|
||||
lokr_w1_a = lora[lokr_w1_a_name]
|
||||
loaded_keys.add(lokr_w1_a_name)
|
||||
|
||||
lokr_w1_b = None
|
||||
if lokr_w1_b_name in lora.keys():
|
||||
lokr_w1_b = lora[lokr_w1_b_name]
|
||||
loaded_keys.add(lokr_w1_b_name)
|
||||
|
||||
lokr_w2_a = None
|
||||
if lokr_w2_a_name in lora.keys():
|
||||
lokr_w2_a = lora[lokr_w2_a_name]
|
||||
loaded_keys.add(lokr_w2_a_name)
|
||||
|
||||
lokr_w2_b = None
|
||||
if lokr_w2_b_name in lora.keys():
|
||||
lokr_w2_b = lora[lokr_w2_b_name]
|
||||
loaded_keys.add(lokr_w2_b_name)
|
||||
|
||||
lokr_t2 = None
|
||||
if lokr_t2_name in lora.keys():
|
||||
lokr_t2 = lora[lokr_t2_name]
|
||||
loaded_keys.add(lokr_t2_name)
|
||||
|
||||
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
||||
patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale))
|
||||
|
||||
#glora
|
||||
a1_name = "{}.a1.weight".format(x)
|
||||
a2_name = "{}.a2.weight".format(x)
|
||||
b1_name = "{}.b1.weight".format(x)
|
||||
b2_name = "{}.b2.weight".format(x)
|
||||
if a1_name in lora:
|
||||
patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale))
|
||||
loaded_keys.add(a1_name)
|
||||
loaded_keys.add(a2_name)
|
||||
loaded_keys.add(b1_name)
|
||||
loaded_keys.add(b2_name)
|
||||
for adapter_cls in weight_adapter.adapters:
|
||||
adapter = adapter_cls.load(x, lora, alpha, dora_scale, loaded_keys)
|
||||
if adapter is not None:
|
||||
patch_dict[to_load[x]] = adapter
|
||||
loaded_keys.update(adapter.loaded_keys)
|
||||
continue
|
||||
|
||||
w_norm_name = "{}.w_norm".format(x)
|
||||
b_norm_name = "{}.b_norm".format(x)
|
||||
@@ -405,29 +279,16 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
key_map["transformer.{}".format(key_lora)] = k
|
||||
key_map["diffusion_model.{}".format(key_lora)] = k # Old loras
|
||||
|
||||
if isinstance(model, comfy.model_base.HiDream):
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model."):
|
||||
if k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
||||
key_map["lycoris_{}".format(key_lora)] = k #SimpleTuner lycoris format
|
||||
|
||||
return key_map
|
||||
|
||||
|
||||
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
|
||||
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
|
||||
lora_diff *= alpha
|
||||
weight_calc = weight + function(lora_diff).type(weight.dtype)
|
||||
weight_norm = (
|
||||
weight_calc.transpose(0, 1)
|
||||
.reshape(weight_calc.shape[1], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
|
||||
.transpose(0, 1)
|
||||
)
|
||||
|
||||
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
|
||||
if strength != 1.0:
|
||||
weight_calc -= weight
|
||||
weight += strength * (weight_calc)
|
||||
else:
|
||||
weight[:] = weight_calc
|
||||
return weight
|
||||
|
||||
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
|
||||
"""
|
||||
Pad a tensor to a new shape with zeros.
|
||||
@@ -482,6 +343,16 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
|
||||
if isinstance(v, list):
|
||||
v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )
|
||||
|
||||
if isinstance(v, weight_adapter.WeightAdapterBase):
|
||||
output = v.calculate_weight(weight, key, strength, strength_model, offset, function, intermediate_dtype, original_weights)
|
||||
if output is None:
|
||||
logging.warning("Calculate Weight Failed: {} {}".format(v.name, key))
|
||||
else:
|
||||
weight = output
|
||||
if old_weight is not None:
|
||||
weight = old_weight
|
||||
continue
|
||||
|
||||
if len(v) == 1:
|
||||
patch_type = "diff"
|
||||
elif len(v) == 2:
|
||||
@@ -508,157 +379,6 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
|
||||
diff_weight = comfy.model_management.cast_to_device(target_weight, weight.device, intermediate_dtype) - \
|
||||
comfy.model_management.cast_to_device(original_weights[key][0][0], weight.device, intermediate_dtype)
|
||||
weight += function(strength * comfy.model_management.cast_to_device(diff_weight, weight.device, weight.dtype))
|
||||
elif patch_type == "lora": #lora/locon
|
||||
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
|
||||
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
|
||||
dora_scale = v[4]
|
||||
reshape = v[5]
|
||||
|
||||
if reshape is not None:
|
||||
weight = pad_tensor_to_shape(weight, reshape)
|
||||
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / mat2.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
if v[3] is not None:
|
||||
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
||||
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, intermediate_dtype)
|
||||
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
|
||||
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
|
||||
try:
|
||||
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "lokr":
|
||||
w1 = v[0]
|
||||
w2 = v[1]
|
||||
w1_a = v[3]
|
||||
w1_b = v[4]
|
||||
w2_a = v[5]
|
||||
w2_b = v[6]
|
||||
t2 = v[7]
|
||||
dora_scale = v[8]
|
||||
dim = None
|
||||
|
||||
if w1 is None:
|
||||
dim = w1_b.shape[0]
|
||||
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
|
||||
|
||||
if w2 is None:
|
||||
dim = w2_b.shape[0]
|
||||
if t2 is None:
|
||||
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
if v[2] is not None and dim is not None:
|
||||
alpha = v[2] / dim
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "loha":
|
||||
w1a = v[0]
|
||||
w1b = v[1]
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / w1b.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
w2a = v[3]
|
||||
w2b = v[4]
|
||||
dora_scale = v[7]
|
||||
if v[5] is not None: #cp decomposition
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
|
||||
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
|
||||
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
|
||||
|
||||
try:
|
||||
lora_diff = (m1 * m2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "glora":
|
||||
dora_scale = v[5]
|
||||
|
||||
old_glora = False
|
||||
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
|
||||
rank = v[0].shape[0]
|
||||
old_glora = True
|
||||
|
||||
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
|
||||
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
|
||||
pass
|
||||
else:
|
||||
old_glora = False
|
||||
rank = v[1].shape[0]
|
||||
|
||||
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
|
||||
if v[4] is not None:
|
||||
alpha = v[4] / rank
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
if old_glora:
|
||||
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
|
||||
else:
|
||||
if weight.dim() > 2:
|
||||
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
else:
|
||||
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
|
||||
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
else:
|
||||
logging.warning("patch type not recognized {} {}".format(patch_type, key))
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import comfy.utils
|
||||
|
||||
|
||||
def convert_lora_bfl_control(sd): #BFL loras for Flux
|
||||
@@ -11,7 +12,13 @@ def convert_lora_bfl_control(sd): #BFL loras for Flux
|
||||
return sd_out
|
||||
|
||||
|
||||
def convert_lora_wan_fun(sd): #Wan Fun loras
|
||||
return comfy.utils.state_dict_prefix_replace(sd, {"lora_unet__": "lora_unet_"})
|
||||
|
||||
|
||||
def convert_lora(sd):
|
||||
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd:
|
||||
return convert_lora_bfl_control(sd)
|
||||
if "lora_unet__blocks_0_cross_attn_k.lora_down.weight" in sd:
|
||||
return convert_lora_wan_fun(sd)
|
||||
return sd
|
||||
|
||||
@@ -37,6 +37,8 @@ import comfy.ldm.cosmos.model
|
||||
import comfy.ldm.lumina.model
|
||||
import comfy.ldm.wan.model
|
||||
import comfy.ldm.hunyuan3d.model
|
||||
import comfy.ldm.hidream.model
|
||||
import comfy.ldm.chroma.model
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
@@ -785,8 +787,8 @@ class PixArt(BaseModel):
|
||||
return out
|
||||
|
||||
class Flux(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux)
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None, unet_model=comfy.ldm.flux.model.Flux):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=unet_model)
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
try:
|
||||
@@ -992,30 +994,40 @@ class WAN21(BaseModel):
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
noise = kwargs.get("noise", None)
|
||||
if self.diffusion_model.patch_embedding.weight.shape[1] == noise.shape[1]:
|
||||
extra_channels = self.diffusion_model.patch_embedding.weight.shape[1] - noise.shape[1]
|
||||
if extra_channels == 0:
|
||||
return None
|
||||
|
||||
image = kwargs.get("concat_latent_image", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
if image is None:
|
||||
image = torch.zeros_like(noise)
|
||||
|
||||
shape_image = list(noise.shape)
|
||||
shape_image[1] = extra_channels
|
||||
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
|
||||
else:
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
image = self.process_latent_in(image)
|
||||
for i in range(0, image.shape[1], 16):
|
||||
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
|
||||
if not self.image_to_video:
|
||||
if not self.image_to_video or extra_channels == image.shape[1]:
|
||||
return image
|
||||
|
||||
if image.shape[1] > (extra_channels - 4):
|
||||
image = image[:, :(extra_channels - 4)]
|
||||
|
||||
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
||||
if mask is None:
|
||||
mask = torch.zeros_like(noise)[:, :4]
|
||||
else:
|
||||
mask = 1.0 - torch.mean(mask, dim=1, keepdim=True)
|
||||
if mask.shape[1] != 4:
|
||||
mask = torch.mean(mask, dim=1, keepdim=True)
|
||||
mask = 1.0 - mask
|
||||
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
if mask.shape[-3] < noise.shape[-3]:
|
||||
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
|
||||
if mask.shape[1] == 1:
|
||||
mask = mask.repeat(1, 4, 1, 1, 1)
|
||||
mask = utils.resize_to_batch_size(mask, noise.shape[0])
|
||||
|
||||
@@ -1032,6 +1044,37 @@ class WAN21(BaseModel):
|
||||
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.penultimate_hidden_states)
|
||||
return out
|
||||
|
||||
|
||||
class WAN21_Vace(WAN21):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
|
||||
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.VaceWanModel)
|
||||
self.image_to_video = image_to_video
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
noise = kwargs.get("noise", None)
|
||||
noise_shape = list(noise.shape)
|
||||
vace_frames = kwargs.get("vace_frames", None)
|
||||
if vace_frames is None:
|
||||
noise_shape[1] = 32
|
||||
vace_frames = torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)
|
||||
|
||||
for i in range(0, vace_frames.shape[1], 16):
|
||||
vace_frames = vace_frames.clone()
|
||||
vace_frames[:, i:i + 16] = self.process_latent_in(vace_frames[:, i:i + 16])
|
||||
|
||||
mask = kwargs.get("vace_mask", None)
|
||||
if mask is None:
|
||||
noise_shape[1] = 64
|
||||
mask = torch.ones(noise_shape, device=noise.device, dtype=noise.dtype)
|
||||
|
||||
out['vace_context'] = comfy.conds.CONDRegular(torch.cat([vace_frames.to(noise), mask.to(noise)], dim=1))
|
||||
|
||||
vace_strength = kwargs.get("vace_strength", 1.0)
|
||||
out['vace_strength'] = comfy.conds.CONDConstant(vace_strength)
|
||||
return out
|
||||
|
||||
|
||||
class Hunyuan3Dv2(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan3d.model.Hunyuan3Dv2)
|
||||
@@ -1046,3 +1089,35 @@ class Hunyuan3Dv2(BaseModel):
|
||||
if guidance is not None:
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
|
||||
return out
|
||||
|
||||
class HiDream(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hidream.model.HiDreamImageTransformer2DModel)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
return kwargs["pooled_output"]
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
conditioning_llama3 = kwargs.get("conditioning_llama3", None)
|
||||
if conditioning_llama3 is not None:
|
||||
out['encoder_hidden_states_llama3'] = comfy.conds.CONDRegular(conditioning_llama3)
|
||||
image_cond = kwargs.get("concat_latent_image", None)
|
||||
if image_cond is not None:
|
||||
out['image_cond'] = comfy.conds.CONDNoiseShape(self.process_latent_in(image_cond))
|
||||
return out
|
||||
|
||||
class Chroma(Flux):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma.model.Chroma)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
|
||||
guidance = kwargs.get("guidance", 0)
|
||||
if guidance is not None:
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
|
||||
return out
|
||||
|
||||
@@ -164,7 +164,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
if in_key in state_dict_keys:
|
||||
dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size)
|
||||
dit_config["out_channels"] = 16
|
||||
dit_config["vec_in_dim"] = 768
|
||||
vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix)
|
||||
if vec_in_key in state_dict_keys:
|
||||
dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1]
|
||||
dit_config["context_in_dim"] = 4096
|
||||
dit_config["hidden_size"] = 3072
|
||||
dit_config["mlp_ratio"] = 4.0
|
||||
@@ -174,6 +176,15 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["axes_dim"] = [16, 56, 56]
|
||||
dit_config["theta"] = 10000
|
||||
dit_config["qkv_bias"] = True
|
||||
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
|
||||
dit_config["image_model"] = "chroma"
|
||||
dit_config["in_channels"] = 64
|
||||
dit_config["out_channels"] = 64
|
||||
dit_config["in_dim"] = 64
|
||||
dit_config["out_dim"] = 3072
|
||||
dit_config["hidden_dim"] = 5120
|
||||
dit_config["n_layers"] = 5
|
||||
else:
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
return dit_config
|
||||
|
||||
@@ -317,10 +328,18 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["cross_attn_norm"] = True
|
||||
dit_config["eps"] = 1e-6
|
||||
dit_config["in_dim"] = state_dict['{}patch_embedding.weight'.format(key_prefix)].shape[1]
|
||||
if '{}vace_patch_embedding.weight'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "vace"
|
||||
dit_config["vace_in_dim"] = state_dict['{}vace_patch_embedding.weight'.format(key_prefix)].shape[1]
|
||||
dit_config["vace_layers"] = count_blocks(state_dict_keys, '{}vace_blocks.'.format(key_prefix) + '{}.')
|
||||
else:
|
||||
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "i2v"
|
||||
else:
|
||||
dit_config["model_type"] = "t2v"
|
||||
flf_weight = state_dict.get('{}img_emb.emb_pos'.format(key_prefix))
|
||||
if flf_weight is not None:
|
||||
dit_config["flf_pos_embed_token_number"] = flf_weight.shape[1]
|
||||
return dit_config
|
||||
|
||||
if '{}latent_in.weight'.format(key_prefix) in state_dict_keys: # Hunyuan 3D
|
||||
@@ -338,6 +357,25 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
return dit_config
|
||||
|
||||
if '{}caption_projection.0.linear.weight'.format(key_prefix) in state_dict_keys: # HiDream
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "hidream"
|
||||
dit_config["attention_head_dim"] = 128
|
||||
dit_config["axes_dims_rope"] = [64, 32, 32]
|
||||
dit_config["caption_channels"] = [4096, 4096]
|
||||
dit_config["max_resolution"] = [128, 128]
|
||||
dit_config["in_channels"] = 16
|
||||
dit_config["llama_layers"] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31]
|
||||
dit_config["num_attention_heads"] = 20
|
||||
dit_config["num_routed_experts"] = 4
|
||||
dit_config["num_activated_experts"] = 2
|
||||
dit_config["num_layers"] = 16
|
||||
dit_config["num_single_layers"] = 32
|
||||
dit_config["out_channels"] = 16
|
||||
dit_config["patch_size"] = 2
|
||||
dit_config["text_emb_dim"] = 2048
|
||||
return dit_config
|
||||
|
||||
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
|
||||
return None
|
||||
|
||||
|
||||
@@ -46,6 +46,32 @@ cpu_state = CPUState.GPU
|
||||
|
||||
total_vram = 0
|
||||
|
||||
def get_supported_float8_types():
|
||||
float8_types = []
|
||||
try:
|
||||
float8_types.append(torch.float8_e4m3fn)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
float8_types.append(torch.float8_e4m3fnuz)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
float8_types.append(torch.float8_e5m2)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
float8_types.append(torch.float8_e5m2fnuz)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
float8_types.append(torch.float8_e8m0fnu)
|
||||
except:
|
||||
pass
|
||||
return float8_types
|
||||
|
||||
FLOAT8_TYPES = get_supported_float8_types()
|
||||
|
||||
xpu_available = False
|
||||
torch_version = ""
|
||||
try:
|
||||
@@ -699,13 +725,12 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
|
||||
return torch.float8_e4m3fn
|
||||
if args.fp8_e5m2_unet:
|
||||
return torch.float8_e5m2
|
||||
if args.fp8_e8m0fnu_unet:
|
||||
return torch.float8_e8m0fnu
|
||||
|
||||
fp8_dtype = None
|
||||
try:
|
||||
if weight_dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
|
||||
if weight_dtype in FLOAT8_TYPES:
|
||||
fp8_dtype = weight_dtype
|
||||
except:
|
||||
pass
|
||||
|
||||
if fp8_dtype is not None:
|
||||
if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
|
||||
@@ -800,6 +825,8 @@ def text_encoder_dtype(device=None):
|
||||
return torch.float8_e5m2
|
||||
elif args.fp16_text_enc:
|
||||
return torch.float16
|
||||
elif args.bf16_text_enc:
|
||||
return torch.bfloat16
|
||||
elif args.fp32_text_enc:
|
||||
return torch.float32
|
||||
|
||||
@@ -912,13 +939,59 @@ def force_channels_last():
|
||||
#TODO
|
||||
return False
|
||||
|
||||
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
|
||||
|
||||
STREAMS = {}
|
||||
NUM_STREAMS = 1
|
||||
if args.async_offload:
|
||||
NUM_STREAMS = 2
|
||||
logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS))
|
||||
|
||||
stream_counters = {}
|
||||
def get_offload_stream(device):
|
||||
stream_counter = stream_counters.get(device, 0)
|
||||
if NUM_STREAMS <= 1:
|
||||
return None
|
||||
|
||||
if device in STREAMS:
|
||||
ss = STREAMS[device]
|
||||
s = ss[stream_counter]
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
if is_device_cuda(device):
|
||||
ss[stream_counter].wait_stream(torch.cuda.current_stream())
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
elif is_device_cuda(device):
|
||||
ss = []
|
||||
for k in range(NUM_STREAMS):
|
||||
ss.append(torch.cuda.Stream(device=device, priority=0))
|
||||
STREAMS[device] = ss
|
||||
s = ss[stream_counter]
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
return None
|
||||
|
||||
def sync_stream(device, stream):
|
||||
if stream is None:
|
||||
return
|
||||
if is_device_cuda(device):
|
||||
torch.cuda.current_stream().wait_stream(stream)
|
||||
|
||||
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
|
||||
if device is None or weight.device == device:
|
||||
if not copy:
|
||||
if dtype is None or weight.dtype == dtype:
|
||||
return weight
|
||||
if stream is not None:
|
||||
with stream:
|
||||
return weight.to(dtype=dtype, copy=copy)
|
||||
return weight.to(dtype=dtype, copy=copy)
|
||||
|
||||
if stream is not None:
|
||||
with stream:
|
||||
r = torch.empty_like(weight, dtype=dtype, device=device)
|
||||
r.copy_(weight, non_blocking=non_blocking)
|
||||
else:
|
||||
r = torch.empty_like(weight, dtype=dtype, device=device)
|
||||
r.copy_(weight, non_blocking=non_blocking)
|
||||
return r
|
||||
@@ -1212,6 +1285,8 @@ def soft_empty_cache(force=False):
|
||||
torch.xpu.empty_cache()
|
||||
elif is_ascend_npu():
|
||||
torch.npu.empty_cache()
|
||||
elif is_mlu():
|
||||
torch.mlu.empty_cache()
|
||||
elif torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
@@ -111,13 +111,14 @@ class ModelSamplingDiscrete(torch.nn.Module):
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
self.zsnr = zsnr
|
||||
|
||||
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
|
||||
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
|
||||
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
|
||||
|
||||
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
||||
if zsnr:
|
||||
if self.zsnr:
|
||||
sigmas = rescale_zero_terminal_snr_sigmas(sigmas)
|
||||
|
||||
self.set_sigmas(sigmas)
|
||||
|
||||
67
comfy/ops.py
67
comfy/ops.py
@@ -21,6 +21,8 @@ import logging
|
||||
import comfy.model_management
|
||||
from comfy.cli_args import args, PerformanceFeature
|
||||
import comfy.float
|
||||
import comfy.rmsnorm
|
||||
import contextlib
|
||||
|
||||
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
|
||||
|
||||
@@ -36,20 +38,31 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
|
||||
if device is None:
|
||||
device = input.device
|
||||
|
||||
offload_stream = comfy.model_management.get_offload_stream(device)
|
||||
if offload_stream is not None:
|
||||
wf_context = offload_stream
|
||||
else:
|
||||
wf_context = contextlib.nullcontext()
|
||||
|
||||
bias = None
|
||||
non_blocking = comfy.model_management.device_supports_non_blocking(device)
|
||||
if s.bias is not None:
|
||||
has_function = len(s.bias_function) > 0
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
|
||||
|
||||
if has_function:
|
||||
with wf_context:
|
||||
for f in s.bias_function:
|
||||
bias = f(bias)
|
||||
|
||||
has_function = len(s.weight_function) > 0
|
||||
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
|
||||
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
|
||||
if has_function:
|
||||
with wf_context:
|
||||
for f in s.weight_function:
|
||||
weight = f(weight)
|
||||
|
||||
comfy.model_management.sync_stream(device, offload_stream)
|
||||
return weight, bias
|
||||
|
||||
class CastWeightBiasOp:
|
||||
@@ -146,6 +159,25 @@ class disable_weight_init:
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class RMSNorm(comfy.rmsnorm.RMSNorm, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
self.bias = None
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
if self.weight is not None:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
else:
|
||||
weight = None
|
||||
return comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
|
||||
# return torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
@@ -243,6 +275,9 @@ class manual_cast(disable_weight_init):
|
||||
class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
|
||||
comfy_cast_weights = True
|
||||
|
||||
class RMSNorm(disable_weight_init.RMSNorm):
|
||||
comfy_cast_weights = True
|
||||
|
||||
class Embedding(disable_weight_init.Embedding):
|
||||
comfy_cast_weights = True
|
||||
|
||||
@@ -357,6 +392,25 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
|
||||
|
||||
return scaled_fp8_op
|
||||
|
||||
CUBLAS_IS_AVAILABLE = False
|
||||
try:
|
||||
from cublas_ops import CublasLinear
|
||||
CUBLAS_IS_AVAILABLE = True
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
if CUBLAS_IS_AVAILABLE:
|
||||
class cublas_ops(disable_weight_init):
|
||||
class Linear(CublasLinear, disable_weight_init.Linear):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
return super().forward(input)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
|
||||
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
|
||||
if scaled_fp8 is not None:
|
||||
@@ -369,6 +423,15 @@ def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_
|
||||
):
|
||||
return fp8_ops
|
||||
|
||||
if (
|
||||
PerformanceFeature.CublasOps in args.fast and
|
||||
CUBLAS_IS_AVAILABLE and
|
||||
weight_dtype == torch.float16 and
|
||||
(compute_dtype == torch.float16 or compute_dtype is None)
|
||||
):
|
||||
logging.info("Using cublas ops")
|
||||
return cublas_ops
|
||||
|
||||
if compute_dtype is None or weight_dtype == compute_dtype:
|
||||
return disable_weight_init
|
||||
|
||||
|
||||
@@ -48,6 +48,7 @@ def get_all_callbacks(call_type: str, transformer_options: dict, is_model_option
|
||||
|
||||
class WrappersMP:
|
||||
OUTER_SAMPLE = "outer_sample"
|
||||
PREPARE_SAMPLING = "prepare_sampling"
|
||||
SAMPLER_SAMPLE = "sampler_sample"
|
||||
CALC_COND_BATCH = "calc_cond_batch"
|
||||
APPLY_MODEL = "apply_model"
|
||||
|
||||
55
comfy/rmsnorm.py
Normal file
55
comfy/rmsnorm.py
Normal file
@@ -0,0 +1,55 @@
|
||||
import torch
|
||||
import comfy.model_management
|
||||
import numbers
|
||||
|
||||
RMSNorm = None
|
||||
|
||||
try:
|
||||
rms_norm_torch = torch.nn.functional.rms_norm
|
||||
RMSNorm = torch.nn.RMSNorm
|
||||
except:
|
||||
rms_norm_torch = None
|
||||
|
||||
|
||||
def rms_norm(x, weight=None, eps=1e-6):
|
||||
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
|
||||
if weight is None:
|
||||
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
|
||||
else:
|
||||
return rms_norm_torch(x, weight.shape, weight=comfy.model_management.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
|
||||
else:
|
||||
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
|
||||
if weight is None:
|
||||
return r
|
||||
else:
|
||||
return r * comfy.model_management.cast_to(weight, dtype=x.dtype, device=x.device)
|
||||
|
||||
|
||||
if RMSNorm is None:
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
normalized_shape,
|
||||
eps=None,
|
||||
elementwise_affine=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
# mypy error: incompatible types in assignment
|
||||
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
||||
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
||||
self.eps = eps
|
||||
self.elementwise_affine = elementwise_affine
|
||||
if self.elementwise_affine:
|
||||
self.weight = torch.nn.Parameter(
|
||||
torch.empty(self.normalized_shape, **factory_kwargs)
|
||||
)
|
||||
else:
|
||||
self.register_parameter("weight", None)
|
||||
self.bias = None
|
||||
|
||||
def forward(self, x):
|
||||
return rms_norm(x, self.weight, self.eps)
|
||||
@@ -106,6 +106,13 @@ def cleanup_additional_models(models):
|
||||
|
||||
|
||||
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
|
||||
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
|
||||
_prepare_sampling,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
|
||||
)
|
||||
return executor.execute(model, noise_shape, conds, model_options=model_options)
|
||||
|
||||
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
|
||||
real_model: BaseModel = None
|
||||
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||||
models += get_additional_models_from_model_options(model_options)
|
||||
|
||||
@@ -710,7 +710,7 @@ KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_c
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
|
||||
"gradient_estimation", "er_sde"]
|
||||
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3"]
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
|
||||
61
comfy/sd.py
61
comfy/sd.py
@@ -41,6 +41,7 @@ import comfy.text_encoders.hunyuan_video
|
||||
import comfy.text_encoders.cosmos
|
||||
import comfy.text_encoders.lumina2
|
||||
import comfy.text_encoders.wan
|
||||
import comfy.text_encoders.hidream
|
||||
|
||||
import comfy.model_patcher
|
||||
import comfy.lora
|
||||
@@ -119,6 +120,7 @@ class CLIP:
|
||||
self.layer_idx = None
|
||||
self.use_clip_schedule = False
|
||||
logging.info("CLIP/text encoder model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype))
|
||||
self.tokenizer_options = {}
|
||||
|
||||
def clone(self):
|
||||
n = CLIP(no_init=True)
|
||||
@@ -126,6 +128,7 @@ class CLIP:
|
||||
n.cond_stage_model = self.cond_stage_model
|
||||
n.tokenizer = self.tokenizer
|
||||
n.layer_idx = self.layer_idx
|
||||
n.tokenizer_options = self.tokenizer_options.copy()
|
||||
n.use_clip_schedule = self.use_clip_schedule
|
||||
n.apply_hooks_to_conds = self.apply_hooks_to_conds
|
||||
return n
|
||||
@@ -133,10 +136,18 @@ class CLIP:
|
||||
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
||||
return self.patcher.add_patches(patches, strength_patch, strength_model)
|
||||
|
||||
def set_tokenizer_option(self, option_name, value):
|
||||
self.tokenizer_options[option_name] = value
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
def tokenize(self, text, return_word_ids=False, **kwargs):
|
||||
tokenizer_options = kwargs.get("tokenizer_options", {})
|
||||
if len(self.tokenizer_options) > 0:
|
||||
tokenizer_options = {**self.tokenizer_options, **tokenizer_options}
|
||||
if len(tokenizer_options) > 0:
|
||||
kwargs["tokenizer_options"] = tokenizer_options
|
||||
return self.tokenizer.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
|
||||
def add_hooks_to_dict(self, pooled_dict: dict[str]):
|
||||
@@ -265,6 +276,7 @@ class VAE:
|
||||
self.process_input = lambda image: image * 2.0 - 1.0
|
||||
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float32]
|
||||
self.disable_offload = False
|
||||
|
||||
self.downscale_index_formula = None
|
||||
self.upscale_index_formula = None
|
||||
@@ -337,6 +349,7 @@ class VAE:
|
||||
self.process_output = lambda audio: audio
|
||||
self.process_input = lambda audio: audio
|
||||
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
self.disable_offload = True
|
||||
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd or "layers.4.layers.1.attn_block.attn.qkv.weight" in sd or "encoder.layers.4.layers.1.attn_block.attn.qkv.weight" in sd: #genmo mochi vae
|
||||
if "blocks.2.blocks.3.stack.5.weight" in sd:
|
||||
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "decoder."})
|
||||
@@ -515,7 +528,7 @@ class VAE:
|
||||
pixel_samples = None
|
||||
try:
|
||||
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
|
||||
free_memory = model_management.get_free_memory(self.device)
|
||||
batch_number = int(free_memory / memory_used)
|
||||
batch_number = max(1, batch_number)
|
||||
@@ -544,7 +557,7 @@ class VAE:
|
||||
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
|
||||
self.throw_exception_if_invalid()
|
||||
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
|
||||
dims = samples.ndim - 2
|
||||
args = {}
|
||||
if tile_x is not None:
|
||||
@@ -578,7 +591,7 @@ class VAE:
|
||||
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
||||
try:
|
||||
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
|
||||
free_memory = model_management.get_free_memory(self.device)
|
||||
batch_number = int(free_memory / max(1, memory_used))
|
||||
batch_number = max(1, batch_number)
|
||||
@@ -612,7 +625,7 @@ class VAE:
|
||||
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
||||
|
||||
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) # TODO: calculate mem required for tile
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
|
||||
|
||||
args = {}
|
||||
if tile_x is not None:
|
||||
@@ -700,6 +713,8 @@ class CLIPType(Enum):
|
||||
COSMOS = 11
|
||||
LUMINA2 = 12
|
||||
WAN = 13
|
||||
HIDREAM = 14
|
||||
CHROMA = 15
|
||||
|
||||
|
||||
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
@@ -788,6 +803,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
elif clip_type == CLIPType.SD3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif clip_type == CLIPType.HIDREAM:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
@@ -801,13 +819,17 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
elif clip_type == CLIPType.LTXV:
|
||||
clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer
|
||||
elif clip_type == CLIPType.PIXART:
|
||||
elif clip_type == CLIPType.PIXART or clip_type == CLIPType.CHROMA:
|
||||
clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer
|
||||
elif clip_type == CLIPType.WAN:
|
||||
clip_target.clip = comfy.text_encoders.wan.te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.wan.WanT5Tokenizer
|
||||
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
|
||||
elif clip_type == CLIPType.HIDREAM:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data),
|
||||
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None, llama_scaled_fp8=None)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
else: #CLIPType.MOCHI
|
||||
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer
|
||||
@@ -824,10 +846,18 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.lumina2.LuminaTokenizer
|
||||
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
|
||||
elif te_model == TEModel.LLAMA3_8:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
|
||||
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
else:
|
||||
# clip_l
|
||||
if clip_type == CLIPType.SD3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif clip_type == CLIPType.HIDREAM:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
else:
|
||||
clip_target.clip = sd1_clip.SD1ClipModel
|
||||
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
||||
@@ -845,12 +875,33 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
elif clip_type == CLIPType.HUNYUAN_VIDEO:
|
||||
clip_target.clip = comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer
|
||||
elif clip_type == CLIPType.HIDREAM:
|
||||
# Detect
|
||||
hidream_dualclip_classes = []
|
||||
for hidream_te in clip_data:
|
||||
te_model = detect_te_model(hidream_te)
|
||||
hidream_dualclip_classes.append(te_model)
|
||||
|
||||
clip_l = TEModel.CLIP_L in hidream_dualclip_classes
|
||||
clip_g = TEModel.CLIP_G in hidream_dualclip_classes
|
||||
t5 = TEModel.T5_XXL in hidream_dualclip_classes
|
||||
llama = TEModel.LLAMA3_8 in hidream_dualclip_classes
|
||||
|
||||
# Initialize t5xxl_detect and llama_detect kwargs if needed
|
||||
t5_kwargs = t5xxl_detect(clip_data) if t5 else {}
|
||||
llama_kwargs = llama_detect(clip_data) if llama else {}
|
||||
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, **t5_kwargs, **llama_kwargs)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
elif len(clip_data) == 3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif len(clip_data) == 4:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data), **llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
|
||||
parameters = 0
|
||||
for c in clip_data:
|
||||
|
||||
@@ -82,7 +82,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
LAYERS = [
|
||||
"last",
|
||||
"pooled",
|
||||
"hidden"
|
||||
"hidden",
|
||||
"all"
|
||||
]
|
||||
def __init__(self, device="cpu", max_length=77,
|
||||
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
|
||||
@@ -93,6 +94,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
|
||||
if textmodel_json_config is None:
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
|
||||
if "model_name" not in model_options:
|
||||
model_options = {**model_options, "model_name": "clip_l"}
|
||||
|
||||
if isinstance(textmodel_json_config, dict):
|
||||
config = textmodel_json_config
|
||||
@@ -100,6 +103,10 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
with open(textmodel_json_config) as f:
|
||||
config = json.load(f)
|
||||
|
||||
te_model_options = model_options.get("{}_model_config".format(model_options.get("model_name", "")), {})
|
||||
for k, v in te_model_options.items():
|
||||
config[k] = v
|
||||
|
||||
operations = model_options.get("custom_operations", None)
|
||||
scaled_fp8 = None
|
||||
|
||||
@@ -147,7 +154,9 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
def set_clip_options(self, options):
|
||||
layer_idx = options.get("layer", self.layer_idx)
|
||||
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
|
||||
if layer_idx is None or abs(layer_idx) > self.num_layers:
|
||||
if self.layer == "all":
|
||||
pass
|
||||
elif layer_idx is None or abs(layer_idx) > self.num_layers:
|
||||
self.layer = "last"
|
||||
else:
|
||||
self.layer = "hidden"
|
||||
@@ -244,7 +253,12 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
if self.enable_attention_masks:
|
||||
attention_mask_model = attention_mask
|
||||
|
||||
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
|
||||
if self.layer == "all":
|
||||
intermediate_output = "all"
|
||||
else:
|
||||
intermediate_output = self.layer_idx
|
||||
|
||||
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
|
||||
|
||||
if self.layer == "last":
|
||||
z = outputs[0].float()
|
||||
@@ -443,13 +457,14 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
|
||||
return embed_out
|
||||
|
||||
class SDTokenizer:
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, tokenizer_data={}, tokenizer_args={}):
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, tokenizer_data={}, tokenizer_args={}):
|
||||
if tokenizer_path is None:
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
||||
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
|
||||
self.max_length = max_length
|
||||
self.max_length = tokenizer_data.get("{}_max_length".format(embedding_key), max_length)
|
||||
self.min_length = min_length
|
||||
self.end_token = None
|
||||
self.min_padding = min_padding
|
||||
|
||||
empty = self.tokenizer('')["input_ids"]
|
||||
self.tokenizer_adds_end_token = has_end_token
|
||||
@@ -504,13 +519,15 @@ class SDTokenizer:
|
||||
return (embed, leftover)
|
||||
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, tokenizer_options={}, **kwargs):
|
||||
'''
|
||||
Takes a prompt and converts it to a list of (token, weight, word id) elements.
|
||||
Tokens can both be integer tokens and pre computed CLIP tensors.
|
||||
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
|
||||
Returned list has the dimensions NxM where M is the input size of CLIP
|
||||
'''
|
||||
min_length = tokenizer_options.get("{}_min_length".format(self.embedding_key), self.min_length)
|
||||
min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding)
|
||||
|
||||
text = escape_important(text)
|
||||
parsed_weights = token_weights(text, 1.0)
|
||||
@@ -589,10 +606,12 @@ class SDTokenizer:
|
||||
#fill last batch
|
||||
if self.end_token is not None:
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
if self.pad_to_max_length:
|
||||
if min_padding is not None:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * min_padding)
|
||||
if self.pad_to_max_length and len(batch) < self.max_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
|
||||
if self.min_length is not None and len(batch) < self.min_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (self.min_length - len(batch)))
|
||||
if min_length is not None and len(batch) < min_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (min_length - len(batch)))
|
||||
|
||||
if not return_word_ids:
|
||||
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
|
||||
@@ -620,7 +639,7 @@ class SD1Tokenizer:
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
|
||||
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
@@ -645,6 +664,7 @@ class SD1ClipModel(torch.nn.Module):
|
||||
self.clip = "clip_{}".format(self.clip_name)
|
||||
|
||||
clip_model = model_options.get("{}_class".format(self.clip), clip_model)
|
||||
model_options = {**model_options, "model_name": self.clip}
|
||||
setattr(self, self.clip, clip_model(device=device, dtype=dtype, model_options=model_options, **kwargs))
|
||||
|
||||
self.dtypes = set()
|
||||
|
||||
@@ -9,6 +9,7 @@ class SDXLClipG(sd1_clip.SDClipModel):
|
||||
layer_idx=-2
|
||||
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||||
model_options = {**model_options, "model_name": "clip_g"}
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False, return_projected_pooled=True, model_options=model_options)
|
||||
|
||||
@@ -17,19 +18,18 @@ class SDXLClipG(sd1_clip.SDClipModel):
|
||||
|
||||
class SDXLClipGTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g', tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class SDXLTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
@@ -41,8 +41,7 @@ class SDXLTokenizer:
|
||||
class SDXLClipModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
|
||||
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
|
||||
self.clip_g = SDXLClipG(device=device, dtype=dtype, model_options=model_options)
|
||||
self.dtypes = set([dtype])
|
||||
|
||||
@@ -75,7 +74,7 @@ class SDXLRefinerClipModel(sd1_clip.SD1ClipModel):
|
||||
|
||||
class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
|
||||
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g', tokenizer_data=tokenizer_data)
|
||||
|
||||
class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
@@ -84,6 +83,7 @@ class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
|
||||
class StableCascadeClipG(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||||
model_options = {**model_options, "model_name": "clip_g"}
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True, return_projected_pooled=True, model_options=model_options)
|
||||
|
||||
|
||||
@@ -969,12 +969,38 @@ class WAN21_I2V(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "i2v",
|
||||
"in_dim": 36,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21(self, image_to_video=True, device=device)
|
||||
return out
|
||||
|
||||
class WAN21_FunControl2V(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "i2v",
|
||||
"in_dim": 48,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
class WAN21_Vace(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "vace",
|
||||
}
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
self.memory_usage_factor = 1.2 * self.memory_usage_factor
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
class Hunyuan3Dv2(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "hunyuan3d2",
|
||||
@@ -1013,6 +1039,63 @@ class Hunyuan3Dv2mini(Hunyuan3Dv2):
|
||||
|
||||
latent_format = latent_formats.Hunyuan3Dv2mini
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, Hunyuan3Dv2mini, Hunyuan3Dv2]
|
||||
class HiDream(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "hidream",
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 3.0,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
}
|
||||
|
||||
# memory_usage_factor = 1.2 # TODO
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Flux
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.HiDream(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return None # TODO
|
||||
|
||||
class Chroma(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "chroma",
|
||||
}
|
||||
|
||||
unet_extra_config = {
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"multiplier": 1.0,
|
||||
}
|
||||
|
||||
latent_format = comfy.latent_formats.Flux
|
||||
|
||||
memory_usage_factor = 3.2
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Chroma(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.pixart_t5.PixArtTokenizer, comfy.text_encoders.pixart_t5.pixart_te(**t5_detect))
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma]
|
||||
|
||||
models += [SVD_img2vid]
|
||||
|
||||
@@ -11,7 +11,7 @@ class PT5XlModel(sd1_clip.SDClipModel):
|
||||
class PT5XlTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_pile_tokenizer"), "tokenizer.model")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1)
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1, tokenizer_data=tokenizer_data)
|
||||
|
||||
class AuraT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
|
||||
@@ -22,7 +22,7 @@ class CosmosT5XXL(sd1_clip.SD1ClipModel):
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512)
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
|
||||
@@ -9,19 +9,18 @@ import os
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class FluxTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
@@ -35,8 +34,7 @@ class FluxClipModel(torch.nn.Module):
|
||||
def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||
self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
|
||||
self.dtypes = set([dtype, dtype_t5])
|
||||
|
||||
|
||||
@@ -18,7 +18,7 @@ class MochiT5XXL(sd1_clip.SD1ClipModel):
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class MochiT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
|
||||
155
comfy/text_encoders/hidream.py
Normal file
155
comfy/text_encoders/hidream.py
Normal file
@@ -0,0 +1,155 @@
|
||||
from . import hunyuan_video
|
||||
from . import sd3_clip
|
||||
from comfy import sd1_clip
|
||||
from comfy import sdxl_clip
|
||||
import comfy.model_management
|
||||
import torch
|
||||
import logging
|
||||
|
||||
|
||||
class HiDreamTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.t5xxl = sd3_clip.T5XXLTokenizer(embedding_directory=embedding_directory, min_length=128, max_length=128, tokenizer_data=tokenizer_data)
|
||||
self.llama = hunyuan_video.LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=128, pad_token=128009, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
t5xxl = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["t5xxl"] = [t5xxl[0]] # Use only first 128 tokens
|
||||
out["llama"] = self.llama.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return self.clip_g.untokenize(token_weight_pair)
|
||||
|
||||
def state_dict(self):
|
||||
return {}
|
||||
|
||||
|
||||
class HiDreamTEModel(torch.nn.Module):
|
||||
def __init__(self, clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
self.dtypes = set()
|
||||
if clip_l:
|
||||
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=True, model_options=model_options)
|
||||
self.dtypes.add(dtype)
|
||||
else:
|
||||
self.clip_l = None
|
||||
|
||||
if clip_g:
|
||||
self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype, model_options=model_options)
|
||||
self.dtypes.add(dtype)
|
||||
else:
|
||||
self.clip_g = None
|
||||
|
||||
if t5:
|
||||
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
|
||||
self.t5xxl = sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options, attention_mask=True)
|
||||
self.dtypes.add(dtype_t5)
|
||||
else:
|
||||
self.t5xxl = None
|
||||
|
||||
if llama:
|
||||
dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device)
|
||||
if "vocab_size" not in model_options:
|
||||
model_options["vocab_size"] = 128256
|
||||
self.llama = hunyuan_video.LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options, layer="all", layer_idx=None, special_tokens={"start": 128000, "pad": 128009})
|
||||
self.dtypes.add(dtype_llama)
|
||||
else:
|
||||
self.llama = None
|
||||
|
||||
logging.debug("Created HiDream text encoder with: clip_l {}, clip_g {}, t5xxl {}:{}, llama {}:{}".format(clip_l, clip_g, t5, dtype_t5, llama, dtype_llama))
|
||||
|
||||
def set_clip_options(self, options):
|
||||
if self.clip_l is not None:
|
||||
self.clip_l.set_clip_options(options)
|
||||
if self.clip_g is not None:
|
||||
self.clip_g.set_clip_options(options)
|
||||
if self.t5xxl is not None:
|
||||
self.t5xxl.set_clip_options(options)
|
||||
if self.llama is not None:
|
||||
self.llama.set_clip_options(options)
|
||||
|
||||
def reset_clip_options(self):
|
||||
if self.clip_l is not None:
|
||||
self.clip_l.reset_clip_options()
|
||||
if self.clip_g is not None:
|
||||
self.clip_g.reset_clip_options()
|
||||
if self.t5xxl is not None:
|
||||
self.t5xxl.reset_clip_options()
|
||||
if self.llama is not None:
|
||||
self.llama.reset_clip_options()
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs_l = token_weight_pairs["l"]
|
||||
token_weight_pairs_g = token_weight_pairs["g"]
|
||||
token_weight_pairs_t5 = token_weight_pairs["t5xxl"]
|
||||
token_weight_pairs_llama = token_weight_pairs["llama"]
|
||||
lg_out = None
|
||||
pooled = None
|
||||
extra = {}
|
||||
|
||||
if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
|
||||
if self.clip_l is not None:
|
||||
lg_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
||||
else:
|
||||
l_pooled = torch.zeros((1, 768), device=comfy.model_management.intermediate_device())
|
||||
|
||||
if self.clip_g is not None:
|
||||
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
||||
else:
|
||||
g_pooled = torch.zeros((1, 1280), device=comfy.model_management.intermediate_device())
|
||||
|
||||
pooled = torch.cat((l_pooled, g_pooled), dim=-1)
|
||||
|
||||
if self.t5xxl is not None:
|
||||
t5_output = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
|
||||
t5_out, t5_pooled = t5_output[:2]
|
||||
else:
|
||||
t5_out = None
|
||||
|
||||
if self.llama is not None:
|
||||
ll_output = self.llama.encode_token_weights(token_weight_pairs_llama)
|
||||
ll_out, ll_pooled = ll_output[:2]
|
||||
ll_out = ll_out[:, 1:]
|
||||
else:
|
||||
ll_out = None
|
||||
|
||||
if t5_out is None:
|
||||
t5_out = torch.zeros((1, 128, 4096), device=comfy.model_management.intermediate_device())
|
||||
|
||||
if ll_out is None:
|
||||
ll_out = torch.zeros((1, 32, 1, 4096), device=comfy.model_management.intermediate_device())
|
||||
|
||||
if pooled is None:
|
||||
pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device())
|
||||
|
||||
extra["conditioning_llama3"] = ll_out
|
||||
return t5_out, pooled, extra
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
return self.clip_g.load_sd(sd)
|
||||
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
|
||||
return self.clip_l.load_sd(sd)
|
||||
elif "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
|
||||
return self.t5xxl.load_sd(sd)
|
||||
else:
|
||||
return self.llama.load_sd(sd)
|
||||
|
||||
|
||||
def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None):
|
||||
class HiDreamTEModel_(HiDreamTEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["llama_scaled_fp8"] = llama_scaled_fp8
|
||||
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, dtype_t5=dtype_t5, dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
|
||||
return HiDreamTEModel_
|
||||
@@ -21,36 +21,41 @@ def llama_detect(state_dict, prefix=""):
|
||||
|
||||
|
||||
class LLAMA3Tokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256, pad_token=128258):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=128258, min_length=min_length)
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=pad_token, min_length=min_length, tokenizer_data=tokenizer_data)
|
||||
|
||||
class LLAMAModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
|
||||
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}, special_tokens={"start": 128000, "pad": 128258}):
|
||||
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
|
||||
if llama_scaled_fp8 is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 128000, "pad": 128258}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
textmodel_json_config = {}
|
||||
vocab_size = model_options.get("vocab_size", None)
|
||||
if vocab_size is not None:
|
||||
textmodel_json_config["vocab_size"] = vocab_size
|
||||
|
||||
model_options = {**model_options, "model_name": "llama"}
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens=special_tokens, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
|
||||
class HunyuanVideoTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>""" # 95 tokens
|
||||
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1)
|
||||
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, image_interleave=1, **kwargs):
|
||||
out = {}
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
|
||||
if llama_template is None:
|
||||
llama_text = self.llama_template.format(text)
|
||||
else:
|
||||
llama_text = llama_template.format(text)
|
||||
llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids)
|
||||
llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids, **kwargs)
|
||||
embed_count = 0
|
||||
for r in llama_text_tokens:
|
||||
for i in range(len(r)):
|
||||
@@ -72,8 +77,7 @@ class HunyuanVideoClipModel(torch.nn.Module):
|
||||
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device)
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||
self.llama = LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options)
|
||||
self.dtypes = set([dtype, dtype_llama])
|
||||
|
||||
|
||||
@@ -9,24 +9,26 @@ import torch
|
||||
class HyditBertModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json")
|
||||
model_options = {**model_options, "model_name": "hydit_clip"}
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=BertModel, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
|
||||
|
||||
class HyditBertTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77)
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class MT5XLModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_config_xl.json")
|
||||
model_options = {**model_options, "model_name": "mt5xl"}
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
|
||||
|
||||
class MT5XLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
#tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_tokenizer"), "spiece.model")
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
@@ -35,12 +37,12 @@ class HyditTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
mt5_tokenizer_data = tokenizer_data.get("mt5xl.spiece_model", None)
|
||||
self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory)
|
||||
self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
|
||||
self.mt5xl = MT5XLTokenizer(tokenizer_data={**tokenizer_data, "spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids)
|
||||
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids)
|
||||
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
|
||||
@@ -268,11 +268,17 @@ class Llama2_(nn.Module):
|
||||
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
||||
|
||||
intermediate = None
|
||||
all_intermediate = None
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output < 0:
|
||||
if intermediate_output == "all":
|
||||
all_intermediate = []
|
||||
intermediate_output = None
|
||||
elif intermediate_output < 0:
|
||||
intermediate_output = len(self.layers) + intermediate_output
|
||||
|
||||
for i, layer in enumerate(self.layers):
|
||||
if all_intermediate is not None:
|
||||
all_intermediate.append(x.unsqueeze(1).clone())
|
||||
x = layer(
|
||||
x=x,
|
||||
attention_mask=mask,
|
||||
@@ -283,6 +289,12 @@ class Llama2_(nn.Module):
|
||||
intermediate = x.clone()
|
||||
|
||||
x = self.norm(x)
|
||||
if all_intermediate is not None:
|
||||
all_intermediate.append(x.unsqueeze(1).clone())
|
||||
|
||||
if all_intermediate is not None:
|
||||
intermediate = torch.cat(all_intermediate, dim=1)
|
||||
|
||||
if intermediate is not None and final_layer_norm_intermediate:
|
||||
intermediate = self.norm(intermediate)
|
||||
|
||||
|
||||
@@ -1,30 +1,27 @@
|
||||
from comfy import sd1_clip
|
||||
import os
|
||||
|
||||
class LongClipTokenizer_(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(max_length=248, embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
|
||||
class LongClipModel_(sd1_clip.SDClipModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "long_clipl.json")
|
||||
super().__init__(*args, textmodel_json_config=textmodel_json_config, **kwargs)
|
||||
|
||||
class LongClipTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=LongClipTokenizer_)
|
||||
|
||||
class LongClipModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options, clip_model=LongClipModel_, **kwargs)
|
||||
|
||||
def model_options_long_clip(sd, tokenizer_data, model_options):
|
||||
w = sd.get("clip_l.text_model.embeddings.position_embedding.weight", None)
|
||||
if w is None:
|
||||
w = sd.get("clip_g.text_model.embeddings.position_embedding.weight", None)
|
||||
else:
|
||||
model_name = "clip_g"
|
||||
|
||||
if w is None:
|
||||
w = sd.get("text_model.embeddings.position_embedding.weight", None)
|
||||
if w is not None and w.shape[0] == 248:
|
||||
if w is not None:
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
model_name = "clip_g"
|
||||
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
|
||||
model_name = "clip_l"
|
||||
else:
|
||||
model_name = "clip_l"
|
||||
|
||||
if w is not None:
|
||||
tokenizer_data = tokenizer_data.copy()
|
||||
model_options = model_options.copy()
|
||||
tokenizer_data["clip_l_tokenizer_class"] = LongClipTokenizer_
|
||||
model_options["clip_l_class"] = LongClipModel_
|
||||
model_config = model_options.get("model_config", {})
|
||||
model_config["max_position_embeddings"] = w.shape[0]
|
||||
model_options["{}_model_config".format(model_name)] = model_config
|
||||
tokenizer_data["{}_max_length".format(model_name)] = w.shape[0]
|
||||
return tokenizer_data, model_options
|
||||
|
||||
@@ -6,7 +6,7 @@ import comfy.text_encoders.genmo
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128) #pad to 128?
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128, tokenizer_data=tokenizer_data) #pad to 128?
|
||||
|
||||
|
||||
class LTXVT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
|
||||
@@ -6,7 +6,7 @@ import comfy.text_encoders.llama
|
||||
class Gemma2BTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False})
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
@@ -24,7 +24,7 @@ class PixArtT5XXL(sd1_clip.SD1ClipModel):
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1) # no padding
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) # no padding
|
||||
|
||||
class PixArtTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
|
||||
@@ -11,7 +11,7 @@ class T5BaseModel(sd1_clip.SDClipModel):
|
||||
class T5BaseTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128)
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128, tokenizer_data=tokenizer_data)
|
||||
|
||||
class SAT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
|
||||
@@ -12,7 +12,7 @@ class SD2ClipHModel(sd1_clip.SDClipModel):
|
||||
|
||||
class SD2ClipHTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024)
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024, embedding_key='clip_h', tokenizer_data=tokenizer_data)
|
||||
|
||||
class SD2Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
|
||||
@@ -15,6 +15,7 @@ class T5XXLModel(sd1_clip.SDClipModel):
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = t5xxl_scaled_fp8
|
||||
|
||||
model_options = {**model_options, "model_name": "t5xxl"}
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
|
||||
@@ -31,23 +32,22 @@ def t5_xxl_detect(state_dict, prefix=""):
|
||||
return out
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=77, max_length=99999999):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=max_length, min_length=min_length, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class SD3Tokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory)
|
||||
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
@@ -61,8 +61,7 @@ class SD3ClipModel(torch.nn.Module):
|
||||
super().__init__()
|
||||
self.dtypes = set()
|
||||
if clip_l:
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False, model_options=model_options)
|
||||
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False, model_options=model_options)
|
||||
self.dtypes.add(dtype)
|
||||
else:
|
||||
self.clip_l = None
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import os
|
||||
|
||||
class SPieceTokenizer:
|
||||
@staticmethod
|
||||
@@ -15,6 +16,8 @@ class SPieceTokenizer:
|
||||
if isinstance(tokenizer_path, bytes):
|
||||
self.tokenizer = sentencepiece.SentencePieceProcessor(model_proto=tokenizer_path, add_bos=self.add_bos, add_eos=self.add_eos)
|
||||
else:
|
||||
if not os.path.isfile(tokenizer_path):
|
||||
raise ValueError("invalid tokenizer")
|
||||
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=tokenizer_path, add_bos=self.add_bos, add_eos=self.add_eos)
|
||||
|
||||
def get_vocab(self):
|
||||
|
||||
@@ -11,7 +11,7 @@ class UMT5XXlModel(sd1_clip.SDClipModel):
|
||||
class UMT5XXlTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=4096, embedding_key='umt5xxl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=0)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=4096, embedding_key='umt5xxl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=0, tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
17
comfy/weight_adapter/__init__.py
Normal file
17
comfy/weight_adapter/__init__.py
Normal file
@@ -0,0 +1,17 @@
|
||||
from .base import WeightAdapterBase
|
||||
from .lora import LoRAAdapter
|
||||
from .loha import LoHaAdapter
|
||||
from .lokr import LoKrAdapter
|
||||
from .glora import GLoRAAdapter
|
||||
from .oft import OFTAdapter
|
||||
from .boft import BOFTAdapter
|
||||
|
||||
|
||||
adapters: list[type[WeightAdapterBase]] = [
|
||||
LoRAAdapter,
|
||||
LoHaAdapter,
|
||||
LoKrAdapter,
|
||||
GLoRAAdapter,
|
||||
OFTAdapter,
|
||||
BOFTAdapter,
|
||||
]
|
||||
104
comfy/weight_adapter/base.py
Normal file
104
comfy/weight_adapter/base.py
Normal file
@@ -0,0 +1,104 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import comfy.model_management
|
||||
|
||||
|
||||
class WeightAdapterBase:
|
||||
name: str
|
||||
loaded_keys: set[str]
|
||||
weights: list[torch.Tensor]
|
||||
|
||||
@classmethod
|
||||
def load(cls, x: str, lora: dict[str, torch.Tensor]) -> Optional["WeightAdapterBase"]:
|
||||
raise NotImplementedError
|
||||
|
||||
def to_train(self) -> "WeightAdapterTrainBase":
|
||||
raise NotImplementedError
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
key,
|
||||
strength,
|
||||
strength_model,
|
||||
offset,
|
||||
function,
|
||||
intermediate_dtype=torch.float32,
|
||||
original_weight=None,
|
||||
):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class WeightAdapterTrainBase(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
# [TODO] Collaborate with LoRA training PR #7032
|
||||
|
||||
|
||||
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
|
||||
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
|
||||
lora_diff *= alpha
|
||||
weight_calc = weight + function(lora_diff).type(weight.dtype)
|
||||
|
||||
wd_on_output_axis = dora_scale.shape[0] == weight_calc.shape[0]
|
||||
if wd_on_output_axis:
|
||||
weight_norm = (
|
||||
weight.reshape(weight.shape[0], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(weight.shape[0], *[1] * (weight.dim() - 1))
|
||||
)
|
||||
else:
|
||||
weight_norm = (
|
||||
weight_calc.transpose(0, 1)
|
||||
.reshape(weight_calc.shape[1], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
|
||||
.transpose(0, 1)
|
||||
)
|
||||
weight_norm = weight_norm + torch.finfo(weight.dtype).eps
|
||||
|
||||
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
|
||||
if strength != 1.0:
|
||||
weight_calc -= weight
|
||||
weight += strength * (weight_calc)
|
||||
else:
|
||||
weight[:] = weight_calc
|
||||
return weight
|
||||
|
||||
|
||||
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
|
||||
"""
|
||||
Pad a tensor to a new shape with zeros.
|
||||
|
||||
Args:
|
||||
tensor (torch.Tensor): The original tensor to be padded.
|
||||
new_shape (List[int]): The desired shape of the padded tensor.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: A new tensor padded with zeros to the specified shape.
|
||||
|
||||
Note:
|
||||
If the new shape is smaller than the original tensor in any dimension,
|
||||
the original tensor will be truncated in that dimension.
|
||||
"""
|
||||
if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]):
|
||||
raise ValueError("The new shape must be larger than the original tensor in all dimensions")
|
||||
|
||||
if len(new_shape) != len(tensor.shape):
|
||||
raise ValueError("The new shape must have the same number of dimensions as the original tensor")
|
||||
|
||||
# Create a new tensor filled with zeros
|
||||
padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device)
|
||||
|
||||
# Create slicing tuples for both tensors
|
||||
orig_slices = tuple(slice(0, dim) for dim in tensor.shape)
|
||||
new_slices = tuple(slice(0, dim) for dim in tensor.shape)
|
||||
|
||||
# Copy the original tensor into the new tensor
|
||||
padded_tensor[new_slices] = tensor[orig_slices]
|
||||
|
||||
return padded_tensor
|
||||
115
comfy/weight_adapter/boft.py
Normal file
115
comfy/weight_adapter/boft.py
Normal file
@@ -0,0 +1,115 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
|
||||
|
||||
class BOFTAdapter(WeightAdapterBase):
|
||||
name = "boft"
|
||||
|
||||
def __init__(self, loaded_keys, weights):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
x: str,
|
||||
lora: dict[str, torch.Tensor],
|
||||
alpha: float,
|
||||
dora_scale: torch.Tensor,
|
||||
loaded_keys: set[str] = None,
|
||||
) -> Optional["BOFTAdapter"]:
|
||||
if loaded_keys is None:
|
||||
loaded_keys = set()
|
||||
blocks_name = "{}.oft_blocks".format(x)
|
||||
rescale_name = "{}.rescale".format(x)
|
||||
|
||||
blocks = None
|
||||
if blocks_name in lora.keys():
|
||||
blocks = lora[blocks_name]
|
||||
if blocks.ndim == 4:
|
||||
loaded_keys.add(blocks_name)
|
||||
else:
|
||||
blocks = None
|
||||
if blocks is None:
|
||||
return None
|
||||
|
||||
rescale = None
|
||||
if rescale_name in lora.keys():
|
||||
rescale = lora[rescale_name]
|
||||
loaded_keys.add(rescale_name)
|
||||
|
||||
weights = (blocks, rescale, alpha, dora_scale)
|
||||
return cls(loaded_keys, weights)
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
key,
|
||||
strength,
|
||||
strength_model,
|
||||
offset,
|
||||
function,
|
||||
intermediate_dtype=torch.float32,
|
||||
original_weight=None,
|
||||
):
|
||||
v = self.weights
|
||||
blocks = v[0]
|
||||
rescale = v[1]
|
||||
alpha = v[2]
|
||||
dora_scale = v[3]
|
||||
|
||||
blocks = comfy.model_management.cast_to_device(blocks, weight.device, intermediate_dtype)
|
||||
if rescale is not None:
|
||||
rescale = comfy.model_management.cast_to_device(rescale, weight.device, intermediate_dtype)
|
||||
|
||||
boft_m, block_num, boft_b, *_ = blocks.shape
|
||||
|
||||
try:
|
||||
# Get r
|
||||
I = torch.eye(boft_b, device=blocks.device, dtype=blocks.dtype)
|
||||
# for Q = -Q^T
|
||||
q = blocks - blocks.transpose(-1, -2)
|
||||
normed_q = q
|
||||
if alpha > 0: # alpha in boft/bboft is for constraint
|
||||
q_norm = torch.norm(q) + 1e-8
|
||||
if q_norm > alpha:
|
||||
normed_q = q * alpha / q_norm
|
||||
# use float() to prevent unsupported type in .inverse()
|
||||
r = (I + normed_q) @ (I - normed_q).float().inverse()
|
||||
r = r.to(weight)
|
||||
inp = org = weight
|
||||
|
||||
r_b = boft_b//2
|
||||
for i in range(boft_m):
|
||||
bi = r[i]
|
||||
g = 2
|
||||
k = 2**i * r_b
|
||||
if strength != 1:
|
||||
bi = bi * strength + (1-strength) * I
|
||||
inp = (
|
||||
inp.unflatten(0, (-1, g, k))
|
||||
.transpose(1, 2)
|
||||
.flatten(0, 2)
|
||||
.unflatten(0, (-1, boft_b))
|
||||
)
|
||||
inp = torch.einsum("b i j, b j ...-> b i ...", bi, inp)
|
||||
inp = (
|
||||
inp.flatten(0, 1).unflatten(0, (-1, k, g)).transpose(1, 2).flatten(0, 2)
|
||||
)
|
||||
|
||||
if rescale is not None:
|
||||
inp = inp * rescale
|
||||
|
||||
lora_diff = inp - org
|
||||
lora_diff = comfy.model_management.cast_to_device(lora_diff, weight.device, intermediate_dtype)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function((strength * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
93
comfy/weight_adapter/glora.py
Normal file
93
comfy/weight_adapter/glora.py
Normal file
@@ -0,0 +1,93 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
|
||||
|
||||
class GLoRAAdapter(WeightAdapterBase):
|
||||
name = "glora"
|
||||
|
||||
def __init__(self, loaded_keys, weights):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
x: str,
|
||||
lora: dict[str, torch.Tensor],
|
||||
alpha: float,
|
||||
dora_scale: torch.Tensor,
|
||||
loaded_keys: set[str] = None,
|
||||
) -> Optional["GLoRAAdapter"]:
|
||||
if loaded_keys is None:
|
||||
loaded_keys = set()
|
||||
a1_name = "{}.a1.weight".format(x)
|
||||
a2_name = "{}.a2.weight".format(x)
|
||||
b1_name = "{}.b1.weight".format(x)
|
||||
b2_name = "{}.b2.weight".format(x)
|
||||
if a1_name in lora:
|
||||
weights = (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale)
|
||||
loaded_keys.add(a1_name)
|
||||
loaded_keys.add(a2_name)
|
||||
loaded_keys.add(b1_name)
|
||||
loaded_keys.add(b2_name)
|
||||
return cls(loaded_keys, weights)
|
||||
else:
|
||||
return None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
key,
|
||||
strength,
|
||||
strength_model,
|
||||
offset,
|
||||
function,
|
||||
intermediate_dtype=torch.float32,
|
||||
original_weight=None,
|
||||
):
|
||||
v = self.weights
|
||||
dora_scale = v[5]
|
||||
|
||||
old_glora = False
|
||||
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
|
||||
rank = v[0].shape[0]
|
||||
old_glora = True
|
||||
|
||||
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
|
||||
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
|
||||
pass
|
||||
else:
|
||||
old_glora = False
|
||||
rank = v[1].shape[0]
|
||||
|
||||
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
|
||||
if v[4] is not None:
|
||||
alpha = v[4] / rank
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
if old_glora:
|
||||
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
|
||||
else:
|
||||
if weight.dim() > 2:
|
||||
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
else:
|
||||
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
|
||||
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
100
comfy/weight_adapter/loha.py
Normal file
100
comfy/weight_adapter/loha.py
Normal file
@@ -0,0 +1,100 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
|
||||
|
||||
class LoHaAdapter(WeightAdapterBase):
|
||||
name = "loha"
|
||||
|
||||
def __init__(self, loaded_keys, weights):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
x: str,
|
||||
lora: dict[str, torch.Tensor],
|
||||
alpha: float,
|
||||
dora_scale: torch.Tensor,
|
||||
loaded_keys: set[str] = None,
|
||||
) -> Optional["LoHaAdapter"]:
|
||||
if loaded_keys is None:
|
||||
loaded_keys = set()
|
||||
|
||||
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
||||
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
||||
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
||||
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
||||
hada_t1_name = "{}.hada_t1".format(x)
|
||||
hada_t2_name = "{}.hada_t2".format(x)
|
||||
if hada_w1_a_name in lora.keys():
|
||||
hada_t1 = None
|
||||
hada_t2 = None
|
||||
if hada_t1_name in lora.keys():
|
||||
hada_t1 = lora[hada_t1_name]
|
||||
hada_t2 = lora[hada_t2_name]
|
||||
loaded_keys.add(hada_t1_name)
|
||||
loaded_keys.add(hada_t2_name)
|
||||
|
||||
weights = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale)
|
||||
loaded_keys.add(hada_w1_a_name)
|
||||
loaded_keys.add(hada_w1_b_name)
|
||||
loaded_keys.add(hada_w2_a_name)
|
||||
loaded_keys.add(hada_w2_b_name)
|
||||
return cls(loaded_keys, weights)
|
||||
else:
|
||||
return None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
key,
|
||||
strength,
|
||||
strength_model,
|
||||
offset,
|
||||
function,
|
||||
intermediate_dtype=torch.float32,
|
||||
original_weight=None,
|
||||
):
|
||||
v = self.weights
|
||||
w1a = v[0]
|
||||
w1b = v[1]
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / w1b.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
w2a = v[3]
|
||||
w2b = v[4]
|
||||
dora_scale = v[7]
|
||||
if v[5] is not None: #cp decomposition
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
|
||||
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
|
||||
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
|
||||
|
||||
try:
|
||||
lora_diff = (m1 * m2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
133
comfy/weight_adapter/lokr.py
Normal file
133
comfy/weight_adapter/lokr.py
Normal file
@@ -0,0 +1,133 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
|
||||
|
||||
class LoKrAdapter(WeightAdapterBase):
|
||||
name = "lokr"
|
||||
|
||||
def __init__(self, loaded_keys, weights):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
x: str,
|
||||
lora: dict[str, torch.Tensor],
|
||||
alpha: float,
|
||||
dora_scale: torch.Tensor,
|
||||
loaded_keys: set[str] = None,
|
||||
) -> Optional["LoKrAdapter"]:
|
||||
if loaded_keys is None:
|
||||
loaded_keys = set()
|
||||
lokr_w1_name = "{}.lokr_w1".format(x)
|
||||
lokr_w2_name = "{}.lokr_w2".format(x)
|
||||
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
||||
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
||||
lokr_t2_name = "{}.lokr_t2".format(x)
|
||||
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
||||
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
||||
|
||||
lokr_w1 = None
|
||||
if lokr_w1_name in lora.keys():
|
||||
lokr_w1 = lora[lokr_w1_name]
|
||||
loaded_keys.add(lokr_w1_name)
|
||||
|
||||
lokr_w2 = None
|
||||
if lokr_w2_name in lora.keys():
|
||||
lokr_w2 = lora[lokr_w2_name]
|
||||
loaded_keys.add(lokr_w2_name)
|
||||
|
||||
lokr_w1_a = None
|
||||
if lokr_w1_a_name in lora.keys():
|
||||
lokr_w1_a = lora[lokr_w1_a_name]
|
||||
loaded_keys.add(lokr_w1_a_name)
|
||||
|
||||
lokr_w1_b = None
|
||||
if lokr_w1_b_name in lora.keys():
|
||||
lokr_w1_b = lora[lokr_w1_b_name]
|
||||
loaded_keys.add(lokr_w1_b_name)
|
||||
|
||||
lokr_w2_a = None
|
||||
if lokr_w2_a_name in lora.keys():
|
||||
lokr_w2_a = lora[lokr_w2_a_name]
|
||||
loaded_keys.add(lokr_w2_a_name)
|
||||
|
||||
lokr_w2_b = None
|
||||
if lokr_w2_b_name in lora.keys():
|
||||
lokr_w2_b = lora[lokr_w2_b_name]
|
||||
loaded_keys.add(lokr_w2_b_name)
|
||||
|
||||
lokr_t2 = None
|
||||
if lokr_t2_name in lora.keys():
|
||||
lokr_t2 = lora[lokr_t2_name]
|
||||
loaded_keys.add(lokr_t2_name)
|
||||
|
||||
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
||||
weights = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale)
|
||||
return cls(loaded_keys, weights)
|
||||
else:
|
||||
return None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
key,
|
||||
strength,
|
||||
strength_model,
|
||||
offset,
|
||||
function,
|
||||
intermediate_dtype=torch.float32,
|
||||
original_weight=None,
|
||||
):
|
||||
v = self.weights
|
||||
w1 = v[0]
|
||||
w2 = v[1]
|
||||
w1_a = v[3]
|
||||
w1_b = v[4]
|
||||
w2_a = v[5]
|
||||
w2_b = v[6]
|
||||
t2 = v[7]
|
||||
dora_scale = v[8]
|
||||
dim = None
|
||||
|
||||
if w1 is None:
|
||||
dim = w1_b.shape[0]
|
||||
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
|
||||
|
||||
if w2 is None:
|
||||
dim = w2_b.shape[0]
|
||||
if t2 is None:
|
||||
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
if v[2] is not None and dim is not None:
|
||||
alpha = v[2] / dim
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
142
comfy/weight_adapter/lora.py
Normal file
142
comfy/weight_adapter/lora.py
Normal file
@@ -0,0 +1,142 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose, pad_tensor_to_shape
|
||||
|
||||
|
||||
class LoRAAdapter(WeightAdapterBase):
|
||||
name = "lora"
|
||||
|
||||
def __init__(self, loaded_keys, weights):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
x: str,
|
||||
lora: dict[str, torch.Tensor],
|
||||
alpha: float,
|
||||
dora_scale: torch.Tensor,
|
||||
loaded_keys: set[str] = None,
|
||||
) -> Optional["LoRAAdapter"]:
|
||||
if loaded_keys is None:
|
||||
loaded_keys = set()
|
||||
|
||||
reshape_name = "{}.reshape_weight".format(x)
|
||||
regular_lora = "{}.lora_up.weight".format(x)
|
||||
diffusers_lora = "{}_lora.up.weight".format(x)
|
||||
diffusers2_lora = "{}.lora_B.weight".format(x)
|
||||
diffusers3_lora = "{}.lora.up.weight".format(x)
|
||||
mochi_lora = "{}.lora_B".format(x)
|
||||
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
||||
A_name = None
|
||||
|
||||
if regular_lora in lora.keys():
|
||||
A_name = regular_lora
|
||||
B_name = "{}.lora_down.weight".format(x)
|
||||
mid_name = "{}.lora_mid.weight".format(x)
|
||||
elif diffusers_lora in lora.keys():
|
||||
A_name = diffusers_lora
|
||||
B_name = "{}_lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers2_lora in lora.keys():
|
||||
A_name = diffusers2_lora
|
||||
B_name = "{}.lora_A.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers3_lora in lora.keys():
|
||||
A_name = diffusers3_lora
|
||||
B_name = "{}.lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif mochi_lora in lora.keys():
|
||||
A_name = mochi_lora
|
||||
B_name = "{}.lora_A".format(x)
|
||||
mid_name = None
|
||||
elif transformers_lora in lora.keys():
|
||||
A_name = transformers_lora
|
||||
B_name = "{}.lora_linear_layer.down.weight".format(x)
|
||||
mid_name = None
|
||||
|
||||
if A_name is not None:
|
||||
mid = None
|
||||
if mid_name is not None and mid_name in lora.keys():
|
||||
mid = lora[mid_name]
|
||||
loaded_keys.add(mid_name)
|
||||
reshape = None
|
||||
if reshape_name in lora.keys():
|
||||
try:
|
||||
reshape = lora[reshape_name].tolist()
|
||||
loaded_keys.add(reshape_name)
|
||||
except:
|
||||
pass
|
||||
weights = (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape)
|
||||
loaded_keys.add(A_name)
|
||||
loaded_keys.add(B_name)
|
||||
return cls(loaded_keys, weights)
|
||||
else:
|
||||
return None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
key,
|
||||
strength,
|
||||
strength_model,
|
||||
offset,
|
||||
function,
|
||||
intermediate_dtype=torch.float32,
|
||||
original_weight=None,
|
||||
):
|
||||
v = self.weights
|
||||
mat1 = comfy.model_management.cast_to_device(
|
||||
v[0], weight.device, intermediate_dtype
|
||||
)
|
||||
mat2 = comfy.model_management.cast_to_device(
|
||||
v[1], weight.device, intermediate_dtype
|
||||
)
|
||||
dora_scale = v[4]
|
||||
reshape = v[5]
|
||||
|
||||
if reshape is not None:
|
||||
weight = pad_tensor_to_shape(weight, reshape)
|
||||
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / mat2.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
if v[3] is not None:
|
||||
# locon mid weights, hopefully the math is fine because I didn't properly test it
|
||||
mat3 = comfy.model_management.cast_to_device(
|
||||
v[3], weight.device, intermediate_dtype
|
||||
)
|
||||
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
|
||||
mat2 = (
|
||||
torch.mm(
|
||||
mat2.transpose(0, 1).flatten(start_dim=1),
|
||||
mat3.transpose(0, 1).flatten(start_dim=1),
|
||||
)
|
||||
.reshape(final_shape)
|
||||
.transpose(0, 1)
|
||||
)
|
||||
try:
|
||||
lora_diff = torch.mm(
|
||||
mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)
|
||||
).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(
|
||||
dora_scale,
|
||||
weight,
|
||||
lora_diff,
|
||||
alpha,
|
||||
strength,
|
||||
intermediate_dtype,
|
||||
function,
|
||||
)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
96
comfy/weight_adapter/oft.py
Normal file
96
comfy/weight_adapter/oft.py
Normal file
@@ -0,0 +1,96 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
|
||||
|
||||
class OFTAdapter(WeightAdapterBase):
|
||||
name = "oft"
|
||||
|
||||
def __init__(self, loaded_keys, weights):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
x: str,
|
||||
lora: dict[str, torch.Tensor],
|
||||
alpha: float,
|
||||
dora_scale: torch.Tensor,
|
||||
loaded_keys: set[str] = None,
|
||||
) -> Optional["OFTAdapter"]:
|
||||
if loaded_keys is None:
|
||||
loaded_keys = set()
|
||||
blocks_name = "{}.oft_blocks".format(x)
|
||||
rescale_name = "{}.rescale".format(x)
|
||||
|
||||
blocks = None
|
||||
if blocks_name in lora.keys():
|
||||
blocks = lora[blocks_name]
|
||||
if blocks.ndim == 3:
|
||||
loaded_keys.add(blocks_name)
|
||||
else:
|
||||
blocks = None
|
||||
if blocks is None:
|
||||
return None
|
||||
|
||||
rescale = None
|
||||
if rescale_name in lora.keys():
|
||||
rescale = lora[rescale_name]
|
||||
loaded_keys.add(rescale_name)
|
||||
|
||||
weights = (blocks, rescale, alpha, dora_scale)
|
||||
return cls(loaded_keys, weights)
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
key,
|
||||
strength,
|
||||
strength_model,
|
||||
offset,
|
||||
function,
|
||||
intermediate_dtype=torch.float32,
|
||||
original_weight=None,
|
||||
):
|
||||
v = self.weights
|
||||
blocks = v[0]
|
||||
rescale = v[1]
|
||||
alpha = v[2]
|
||||
dora_scale = v[3]
|
||||
|
||||
blocks = comfy.model_management.cast_to_device(blocks, weight.device, intermediate_dtype)
|
||||
if rescale is not None:
|
||||
rescale = comfy.model_management.cast_to_device(rescale, weight.device, intermediate_dtype)
|
||||
|
||||
block_num, block_size, *_ = blocks.shape
|
||||
|
||||
try:
|
||||
# Get r
|
||||
I = torch.eye(block_size, device=blocks.device, dtype=blocks.dtype)
|
||||
# for Q = -Q^T
|
||||
q = blocks - blocks.transpose(1, 2)
|
||||
normed_q = q
|
||||
if alpha > 0: # alpha in oft/boft is for constraint
|
||||
q_norm = torch.norm(q) + 1e-8
|
||||
if q_norm > alpha:
|
||||
normed_q = q * alpha / q_norm
|
||||
# use float() to prevent unsupported type in .inverse()
|
||||
r = (I + normed_q) @ (I - normed_q).float().inverse()
|
||||
r = r.to(weight)
|
||||
_, *shape = weight.shape
|
||||
lora_diff = torch.einsum(
|
||||
"k n m, k n ... -> k m ...",
|
||||
(r * strength) - strength * I,
|
||||
weight.view(block_num, block_size, *shape),
|
||||
).view(-1, *shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function((strength * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
8
comfy_api/input/__init__.py
Normal file
8
comfy_api/input/__init__.py
Normal file
@@ -0,0 +1,8 @@
|
||||
from .basic_types import ImageInput, AudioInput
|
||||
from .video_types import VideoInput
|
||||
|
||||
__all__ = [
|
||||
"ImageInput",
|
||||
"AudioInput",
|
||||
"VideoInput",
|
||||
]
|
||||
20
comfy_api/input/basic_types.py
Normal file
20
comfy_api/input/basic_types.py
Normal file
@@ -0,0 +1,20 @@
|
||||
import torch
|
||||
from typing import TypedDict
|
||||
|
||||
ImageInput = torch.Tensor
|
||||
"""
|
||||
An image in format [B, H, W, C] where B is the batch size, C is the number of channels,
|
||||
"""
|
||||
|
||||
class AudioInput(TypedDict):
|
||||
"""
|
||||
TypedDict representing audio input.
|
||||
"""
|
||||
|
||||
waveform: torch.Tensor
|
||||
"""
|
||||
Tensor in the format [B, C, T] where B is the batch size, C is the number of channels,
|
||||
"""
|
||||
|
||||
sample_rate: int
|
||||
|
||||
45
comfy_api/input/video_types.py
Normal file
45
comfy_api/input/video_types.py
Normal file
@@ -0,0 +1,45 @@
|
||||
from __future__ import annotations
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
|
||||
|
||||
class VideoInput(ABC):
|
||||
"""
|
||||
Abstract base class for video input types.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def get_components(self) -> VideoComponents:
|
||||
"""
|
||||
Abstract method to get the video components (images, audio, and frame rate).
|
||||
|
||||
Returns:
|
||||
VideoComponents containing images, audio, and frame rate
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def save_to(
|
||||
self,
|
||||
path: str,
|
||||
format: VideoContainer = VideoContainer.AUTO,
|
||||
codec: VideoCodec = VideoCodec.AUTO,
|
||||
metadata: Optional[dict] = None
|
||||
):
|
||||
"""
|
||||
Abstract method to save the video input to a file.
|
||||
"""
|
||||
pass
|
||||
|
||||
# Provide a default implementation, but subclasses can provide optimized versions
|
||||
# if possible.
|
||||
def get_dimensions(self) -> tuple[int, int]:
|
||||
"""
|
||||
Returns the dimensions of the video input.
|
||||
|
||||
Returns:
|
||||
Tuple of (width, height)
|
||||
"""
|
||||
components = self.get_components()
|
||||
return components.images.shape[2], components.images.shape[1]
|
||||
|
||||
7
comfy_api/input_impl/__init__.py
Normal file
7
comfy_api/input_impl/__init__.py
Normal file
@@ -0,0 +1,7 @@
|
||||
from .video_types import VideoFromFile, VideoFromComponents
|
||||
|
||||
__all__ = [
|
||||
# Implementations
|
||||
"VideoFromFile",
|
||||
"VideoFromComponents",
|
||||
]
|
||||
271
comfy_api/input_impl/video_types.py
Normal file
271
comfy_api/input_impl/video_types.py
Normal file
@@ -0,0 +1,271 @@
|
||||
from __future__ import annotations
|
||||
from av.container import InputContainer
|
||||
from av.subtitles.stream import SubtitleStream
|
||||
from fractions import Fraction
|
||||
from typing import Optional
|
||||
from comfy_api.input import AudioInput
|
||||
import av
|
||||
import io
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
from comfy_api.input import VideoInput
|
||||
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
|
||||
|
||||
|
||||
def container_to_output_format(container_format: str | None) -> str | None:
|
||||
"""
|
||||
A container's `format` may be a comma-separated list of formats.
|
||||
E.g., iso container's `format` may be `mov,mp4,m4a,3gp,3g2,mj2`.
|
||||
However, writing to a file/stream with `av.open` requires a single format,
|
||||
or `None` to auto-detect.
|
||||
"""
|
||||
if not container_format:
|
||||
return None # Auto-detect
|
||||
|
||||
if "," not in container_format:
|
||||
return container_format
|
||||
|
||||
formats = container_format.split(",")
|
||||
return formats[0]
|
||||
|
||||
|
||||
def get_open_write_kwargs(
|
||||
dest: str | io.BytesIO, container_format: str, to_format: str | None
|
||||
) -> dict:
|
||||
"""Get kwargs for writing a `VideoFromFile` to a file/stream with `av.open`"""
|
||||
open_kwargs = {
|
||||
"mode": "w",
|
||||
# If isobmff, preserve custom metadata tags (workflow, prompt, extra_pnginfo)
|
||||
"options": {"movflags": "use_metadata_tags"},
|
||||
}
|
||||
|
||||
is_write_to_buffer = isinstance(dest, io.BytesIO)
|
||||
if is_write_to_buffer:
|
||||
# Set output format explicitly, since it cannot be inferred from file extension
|
||||
if to_format == VideoContainer.AUTO:
|
||||
to_format = container_format.lower()
|
||||
elif isinstance(to_format, str):
|
||||
to_format = to_format.lower()
|
||||
open_kwargs["format"] = container_to_output_format(to_format)
|
||||
|
||||
return open_kwargs
|
||||
|
||||
|
||||
class VideoFromFile(VideoInput):
|
||||
"""
|
||||
Class representing video input from a file.
|
||||
"""
|
||||
|
||||
def __init__(self, file: str | io.BytesIO):
|
||||
"""
|
||||
Initialize the VideoFromFile object based off of either a path on disk or a BytesIO object
|
||||
containing the file contents.
|
||||
"""
|
||||
self.__file = file
|
||||
|
||||
def get_dimensions(self) -> tuple[int, int]:
|
||||
"""
|
||||
Returns the dimensions of the video input.
|
||||
|
||||
Returns:
|
||||
Tuple of (width, height)
|
||||
"""
|
||||
if isinstance(self.__file, io.BytesIO):
|
||||
self.__file.seek(0) # Reset the BytesIO object to the beginning
|
||||
with av.open(self.__file, mode='r') as container:
|
||||
for stream in container.streams:
|
||||
if stream.type == 'video':
|
||||
assert isinstance(stream, av.VideoStream)
|
||||
return stream.width, stream.height
|
||||
raise ValueError(f"No video stream found in file '{self.__file}'")
|
||||
|
||||
def get_components_internal(self, container: InputContainer) -> VideoComponents:
|
||||
# Get video frames
|
||||
frames = []
|
||||
for frame in container.decode(video=0):
|
||||
img = frame.to_ndarray(format='rgb24') # shape: (H, W, 3)
|
||||
img = torch.from_numpy(img) / 255.0 # shape: (H, W, 3)
|
||||
frames.append(img)
|
||||
|
||||
images = torch.stack(frames) if len(frames) > 0 else torch.zeros(0, 3, 0, 0)
|
||||
|
||||
# Get frame rate
|
||||
video_stream = next(s for s in container.streams if s.type == 'video')
|
||||
frame_rate = Fraction(video_stream.average_rate) if video_stream and video_stream.average_rate else Fraction(1)
|
||||
|
||||
# Get audio if available
|
||||
audio = None
|
||||
try:
|
||||
container.seek(0) # Reset the container to the beginning
|
||||
for stream in container.streams:
|
||||
if stream.type != 'audio':
|
||||
continue
|
||||
assert isinstance(stream, av.AudioStream)
|
||||
audio_frames = []
|
||||
for packet in container.demux(stream):
|
||||
for frame in packet.decode():
|
||||
assert isinstance(frame, av.AudioFrame)
|
||||
audio_frames.append(frame.to_ndarray()) # shape: (channels, samples)
|
||||
if len(audio_frames) > 0:
|
||||
audio_data = np.concatenate(audio_frames, axis=1) # shape: (channels, total_samples)
|
||||
audio_tensor = torch.from_numpy(audio_data).unsqueeze(0) # shape: (1, channels, total_samples)
|
||||
audio = AudioInput({
|
||||
"waveform": audio_tensor,
|
||||
"sample_rate": int(stream.sample_rate) if stream.sample_rate else 1,
|
||||
})
|
||||
except StopIteration:
|
||||
pass # No audio stream
|
||||
|
||||
metadata = container.metadata
|
||||
return VideoComponents(images=images, audio=audio, frame_rate=frame_rate, metadata=metadata)
|
||||
|
||||
def get_components(self) -> VideoComponents:
|
||||
if isinstance(self.__file, io.BytesIO):
|
||||
self.__file.seek(0) # Reset the BytesIO object to the beginning
|
||||
with av.open(self.__file, mode='r') as container:
|
||||
return self.get_components_internal(container)
|
||||
raise ValueError(f"No video stream found in file '{self.__file}'")
|
||||
|
||||
def save_to(
|
||||
self,
|
||||
path: str | io.BytesIO,
|
||||
format: VideoContainer = VideoContainer.AUTO,
|
||||
codec: VideoCodec = VideoCodec.AUTO,
|
||||
metadata: Optional[dict] = None
|
||||
):
|
||||
if isinstance(self.__file, io.BytesIO):
|
||||
self.__file.seek(0) # Reset the BytesIO object to the beginning
|
||||
with av.open(self.__file, mode='r') as container:
|
||||
container_format = container.format.name
|
||||
video_encoding = container.streams.video[0].codec.name if len(container.streams.video) > 0 else None
|
||||
reuse_streams = True
|
||||
if format != VideoContainer.AUTO and format not in container_format.split(","):
|
||||
reuse_streams = False
|
||||
if codec != VideoCodec.AUTO and codec != video_encoding and video_encoding is not None:
|
||||
reuse_streams = False
|
||||
|
||||
if not reuse_streams:
|
||||
components = self.get_components_internal(container)
|
||||
video = VideoFromComponents(components)
|
||||
return video.save_to(
|
||||
path,
|
||||
format=format,
|
||||
codec=codec,
|
||||
metadata=metadata
|
||||
)
|
||||
|
||||
streams = container.streams
|
||||
|
||||
open_kwargs = get_open_write_kwargs(path, container_format, format)
|
||||
with av.open(path, **open_kwargs) as output_container:
|
||||
# Copy over the original metadata
|
||||
for key, value in container.metadata.items():
|
||||
if metadata is None or key not in metadata:
|
||||
output_container.metadata[key] = value
|
||||
|
||||
# Add our new metadata
|
||||
if metadata is not None:
|
||||
for key, value in metadata.items():
|
||||
if isinstance(value, str):
|
||||
output_container.metadata[key] = value
|
||||
else:
|
||||
output_container.metadata[key] = json.dumps(value)
|
||||
|
||||
# Add streams to the new container
|
||||
stream_map = {}
|
||||
for stream in streams:
|
||||
if isinstance(stream, (av.VideoStream, av.AudioStream, SubtitleStream)):
|
||||
out_stream = output_container.add_stream_from_template(template=stream, opaque=True)
|
||||
stream_map[stream] = out_stream
|
||||
|
||||
# Write packets to the new container
|
||||
for packet in container.demux():
|
||||
if packet.stream in stream_map and packet.dts is not None:
|
||||
packet.stream = stream_map[packet.stream]
|
||||
output_container.mux(packet)
|
||||
|
||||
class VideoFromComponents(VideoInput):
|
||||
"""
|
||||
Class representing video input from tensors.
|
||||
"""
|
||||
|
||||
def __init__(self, components: VideoComponents):
|
||||
self.__components = components
|
||||
|
||||
def get_components(self) -> VideoComponents:
|
||||
return VideoComponents(
|
||||
images=self.__components.images,
|
||||
audio=self.__components.audio,
|
||||
frame_rate=self.__components.frame_rate
|
||||
)
|
||||
|
||||
def save_to(
|
||||
self,
|
||||
path: str,
|
||||
format: VideoContainer = VideoContainer.AUTO,
|
||||
codec: VideoCodec = VideoCodec.AUTO,
|
||||
metadata: Optional[dict] = None
|
||||
):
|
||||
if format != VideoContainer.AUTO and format != VideoContainer.MP4:
|
||||
raise ValueError("Only MP4 format is supported for now")
|
||||
if codec != VideoCodec.AUTO and codec != VideoCodec.H264:
|
||||
raise ValueError("Only H264 codec is supported for now")
|
||||
with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}) as output:
|
||||
# Add metadata before writing any streams
|
||||
if metadata is not None:
|
||||
for key, value in metadata.items():
|
||||
output.metadata[key] = json.dumps(value)
|
||||
|
||||
frame_rate = Fraction(round(self.__components.frame_rate * 1000), 1000)
|
||||
# Create a video stream
|
||||
video_stream = output.add_stream('h264', rate=frame_rate)
|
||||
video_stream.width = self.__components.images.shape[2]
|
||||
video_stream.height = self.__components.images.shape[1]
|
||||
video_stream.pix_fmt = 'yuv420p'
|
||||
|
||||
# Create an audio stream
|
||||
audio_sample_rate = 1
|
||||
audio_stream: Optional[av.AudioStream] = None
|
||||
if self.__components.audio:
|
||||
audio_sample_rate = int(self.__components.audio['sample_rate'])
|
||||
audio_stream = output.add_stream('aac', rate=audio_sample_rate)
|
||||
audio_stream.sample_rate = audio_sample_rate
|
||||
audio_stream.format = 'fltp'
|
||||
|
||||
# Encode video
|
||||
for i, frame in enumerate(self.__components.images):
|
||||
img = (frame * 255).clamp(0, 255).byte().cpu().numpy() # shape: (H, W, 3)
|
||||
frame = av.VideoFrame.from_ndarray(img, format='rgb24')
|
||||
frame = frame.reformat(format='yuv420p') # Convert to YUV420P as required by h264
|
||||
packet = video_stream.encode(frame)
|
||||
output.mux(packet)
|
||||
|
||||
# Flush video
|
||||
packet = video_stream.encode(None)
|
||||
output.mux(packet)
|
||||
|
||||
if audio_stream and self.__components.audio:
|
||||
# Encode audio
|
||||
samples_per_frame = int(audio_sample_rate / frame_rate)
|
||||
num_frames = self.__components.audio['waveform'].shape[2] // samples_per_frame
|
||||
for i in range(num_frames):
|
||||
start = i * samples_per_frame
|
||||
end = start + samples_per_frame
|
||||
# TODO(Feature) - Add support for stereo audio
|
||||
chunk = (
|
||||
self.__components.audio["waveform"][0, 0, start:end]
|
||||
.unsqueeze(0)
|
||||
.contiguous()
|
||||
.numpy()
|
||||
)
|
||||
audio_frame = av.AudioFrame.from_ndarray(chunk, format='fltp', layout='mono')
|
||||
audio_frame.sample_rate = audio_sample_rate
|
||||
audio_frame.pts = i * samples_per_frame
|
||||
for packet in audio_stream.encode(audio_frame):
|
||||
output.mux(packet)
|
||||
|
||||
# Flush audio
|
||||
for packet in audio_stream.encode(None):
|
||||
output.mux(packet)
|
||||
|
||||
8
comfy_api/util/__init__.py
Normal file
8
comfy_api/util/__init__.py
Normal file
@@ -0,0 +1,8 @@
|
||||
from .video_types import VideoContainer, VideoCodec, VideoComponents
|
||||
|
||||
__all__ = [
|
||||
# Utility Types
|
||||
"VideoContainer",
|
||||
"VideoCodec",
|
||||
"VideoComponents",
|
||||
]
|
||||
51
comfy_api/util/video_types.py
Normal file
51
comfy_api/util/video_types.py
Normal file
@@ -0,0 +1,51 @@
|
||||
from __future__ import annotations
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from fractions import Fraction
|
||||
from typing import Optional
|
||||
from comfy_api.input import ImageInput, AudioInput
|
||||
|
||||
class VideoCodec(str, Enum):
|
||||
AUTO = "auto"
|
||||
H264 = "h264"
|
||||
|
||||
@classmethod
|
||||
def as_input(cls) -> list[str]:
|
||||
"""
|
||||
Returns a list of codec names that can be used as node input.
|
||||
"""
|
||||
return [member.value for member in cls]
|
||||
|
||||
class VideoContainer(str, Enum):
|
||||
AUTO = "auto"
|
||||
MP4 = "mp4"
|
||||
|
||||
@classmethod
|
||||
def as_input(cls) -> list[str]:
|
||||
"""
|
||||
Returns a list of container names that can be used as node input.
|
||||
"""
|
||||
return [member.value for member in cls]
|
||||
|
||||
@classmethod
|
||||
def get_extension(cls, value) -> str:
|
||||
"""
|
||||
Returns the file extension for the container.
|
||||
"""
|
||||
if isinstance(value, str):
|
||||
value = cls(value)
|
||||
if value == VideoContainer.MP4 or value == VideoContainer.AUTO:
|
||||
return "mp4"
|
||||
return ""
|
||||
|
||||
@dataclass
|
||||
class VideoComponents:
|
||||
"""
|
||||
Dataclass representing the components of a video.
|
||||
"""
|
||||
|
||||
images: ImageInput
|
||||
frame_rate: Fraction
|
||||
audio: Optional[AudioInput] = None
|
||||
metadata: Optional[dict] = None
|
||||
|
||||
0
comfy_api_nodes/__init__.py
Normal file
0
comfy_api_nodes/__init__.py
Normal file
17
comfy_api_nodes/apis/PixverseController.py
Normal file
17
comfy_api_nodes/apis/PixverseController.py
Normal file
@@ -0,0 +1,17 @@
|
||||
# generated by datamodel-codegen:
|
||||
# filename: https://api.comfy.org/openapi
|
||||
# timestamp: 2025-04-23T15:56:33+00:00
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from . import PixverseDto
|
||||
|
||||
|
||||
class ResponseData(BaseModel):
|
||||
ErrCode: Optional[int] = None
|
||||
ErrMsg: Optional[str] = None
|
||||
Resp: Optional[PixverseDto.V2OpenAPII2VResp] = None
|
||||
57
comfy_api_nodes/apis/PixverseDto.py
Normal file
57
comfy_api_nodes/apis/PixverseDto.py
Normal file
@@ -0,0 +1,57 @@
|
||||
# generated by datamodel-codegen:
|
||||
# filename: https://api.comfy.org/openapi
|
||||
# timestamp: 2025-04-23T15:56:33+00:00
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field, constr
|
||||
|
||||
|
||||
class V2OpenAPII2VResp(BaseModel):
|
||||
video_id: Optional[int] = Field(None, description='Video_id')
|
||||
|
||||
|
||||
class V2OpenAPIT2VReq(BaseModel):
|
||||
aspect_ratio: str = Field(
|
||||
..., description='Aspect ratio (16:9, 4:3, 1:1, 3:4, 9:16)', examples=['16:9']
|
||||
)
|
||||
duration: int = Field(
|
||||
...,
|
||||
description='Video duration (5, 8 seconds, --model=v3.5 only allows 5,8; --quality=1080p does not support 8s)',
|
||||
examples=[5],
|
||||
)
|
||||
model: str = Field(
|
||||
..., description='Model version (only supports v3.5)', examples=['v3.5']
|
||||
)
|
||||
motion_mode: Optional[str] = Field(
|
||||
'normal',
|
||||
description='Motion mode (normal, fast, --fast only available when duration=5; --quality=1080p does not support fast)',
|
||||
examples=['normal'],
|
||||
)
|
||||
negative_prompt: Optional[constr(max_length=2048)] = Field(
|
||||
None, description='Negative prompt\n'
|
||||
)
|
||||
prompt: constr(max_length=2048) = Field(..., description='Prompt')
|
||||
quality: str = Field(
|
||||
...,
|
||||
description='Video quality ("360p"(Turbo model), "540p", "720p", "1080p")',
|
||||
examples=['540p'],
|
||||
)
|
||||
seed: Optional[int] = Field(None, description='Random seed, range: 0 - 2147483647')
|
||||
style: Optional[str] = Field(
|
||||
None,
|
||||
description='Style (effective when model=v3.5, "anime", "3d_animation", "clay", "comic", "cyberpunk") Do not include style parameter unless needed',
|
||||
examples=['anime'],
|
||||
)
|
||||
template_id: Optional[int] = Field(
|
||||
None,
|
||||
description='Template ID (template_id must be activated before use)',
|
||||
examples=[302325299692608],
|
||||
)
|
||||
water_mark: Optional[bool] = Field(
|
||||
False,
|
||||
description='Watermark (true: add watermark, false: no watermark)',
|
||||
examples=[False],
|
||||
)
|
||||
422
comfy_api_nodes/apis/__init__.py
Normal file
422
comfy_api_nodes/apis/__init__.py
Normal file
@@ -0,0 +1,422 @@
|
||||
# generated by datamodel-codegen:
|
||||
# filename: https://api.comfy.org/openapi
|
||||
# timestamp: 2025-04-23T15:56:33+00:00
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pydantic import AnyUrl, BaseModel, Field, confloat, conint
|
||||
|
||||
class Customer(BaseModel):
|
||||
createdAt: Optional[datetime] = Field(
|
||||
None, description='The date and time the user was created'
|
||||
)
|
||||
email: Optional[str] = Field(None, description='The email address for this user')
|
||||
id: str = Field(..., description='The firebase UID of the user')
|
||||
name: Optional[str] = Field(None, description='The name for this user')
|
||||
updatedAt: Optional[datetime] = Field(
|
||||
None, description='The date and time the user was last updated'
|
||||
)
|
||||
|
||||
|
||||
class Error(BaseModel):
|
||||
details: Optional[List[str]] = Field(
|
||||
None,
|
||||
description='Optional detailed information about the error or hints for resolving it.',
|
||||
)
|
||||
message: Optional[str] = Field(
|
||||
None, description='A clear and concise description of the error.'
|
||||
)
|
||||
|
||||
|
||||
class ErrorResponse(BaseModel):
|
||||
error: str
|
||||
message: str
|
||||
|
||||
class ImageRequest(BaseModel):
|
||||
aspect_ratio: Optional[str] = Field(
|
||||
None,
|
||||
description="Optional. The aspect ratio (e.g., 'ASPECT_16_9', 'ASPECT_1_1'). Cannot be used with resolution. Defaults to 'ASPECT_1_1' if unspecified.",
|
||||
)
|
||||
color_palette: Optional[Dict[str, Any]] = Field(
|
||||
None, description='Optional. Color palette object. Only for V_2, V_2_TURBO.'
|
||||
)
|
||||
magic_prompt_option: Optional[str] = Field(
|
||||
None, description="Optional. MagicPrompt usage ('AUTO', 'ON', 'OFF')."
|
||||
)
|
||||
model: str = Field(..., description="The model used (e.g., 'V_2', 'V_2A_TURBO')")
|
||||
negative_prompt: Optional[str] = Field(
|
||||
None,
|
||||
description='Optional. Description of what to exclude. Only for V_1, V_1_TURBO, V_2, V_2_TURBO.',
|
||||
)
|
||||
num_images: Optional[conint(ge=1, le=8)] = Field(
|
||||
1, description='Optional. Number of images to generate (1-8). Defaults to 1.'
|
||||
)
|
||||
prompt: str = Field(
|
||||
..., description='Required. The prompt to use to generate the image.'
|
||||
)
|
||||
resolution: Optional[str] = Field(
|
||||
None,
|
||||
description="Optional. Resolution (e.g., 'RESOLUTION_1024_1024'). Only for model V_2. Cannot be used with aspect_ratio.",
|
||||
)
|
||||
seed: Optional[conint(ge=0, le=2147483647)] = Field(
|
||||
None, description='Optional. A number between 0 and 2147483647.'
|
||||
)
|
||||
style_type: Optional[str] = Field(
|
||||
None,
|
||||
description="Optional. Style type ('AUTO', 'GENERAL', 'REALISTIC', 'DESIGN', 'RENDER_3D', 'ANIME'). Only for models V_2 and above.",
|
||||
)
|
||||
|
||||
|
||||
class Datum(BaseModel):
|
||||
is_image_safe: Optional[bool] = Field(
|
||||
None, description='Indicates whether the image is considered safe.'
|
||||
)
|
||||
prompt: Optional[str] = Field(
|
||||
None, description='The prompt used to generate this image.'
|
||||
)
|
||||
resolution: Optional[str] = Field(
|
||||
None, description="The resolution of the generated image (e.g., '1024x1024')."
|
||||
)
|
||||
seed: Optional[int] = Field(
|
||||
None, description='The seed value used for this generation.'
|
||||
)
|
||||
style_type: Optional[str] = Field(
|
||||
None,
|
||||
description="The style type used for generation (e.g., 'REALISTIC', 'ANIME').",
|
||||
)
|
||||
url: Optional[str] = Field(None, description='URL to the generated image.')
|
||||
|
||||
|
||||
class Code(Enum):
|
||||
int_1100 = 1100
|
||||
int_1101 = 1101
|
||||
int_1102 = 1102
|
||||
int_1103 = 1103
|
||||
|
||||
|
||||
class Code1(Enum):
|
||||
int_1000 = 1000
|
||||
int_1001 = 1001
|
||||
int_1002 = 1002
|
||||
int_1003 = 1003
|
||||
int_1004 = 1004
|
||||
|
||||
|
||||
class AspectRatio(str, Enum):
|
||||
field_16_9 = '16:9'
|
||||
field_9_16 = '9:16'
|
||||
field_1_1 = '1:1'
|
||||
|
||||
|
||||
class Config(BaseModel):
|
||||
horizontal: Optional[confloat(ge=-10.0, le=10.0)] = None
|
||||
pan: Optional[confloat(ge=-10.0, le=10.0)] = None
|
||||
roll: Optional[confloat(ge=-10.0, le=10.0)] = None
|
||||
tilt: Optional[confloat(ge=-10.0, le=10.0)] = None
|
||||
vertical: Optional[confloat(ge=-10.0, le=10.0)] = None
|
||||
zoom: Optional[confloat(ge=-10.0, le=10.0)] = None
|
||||
|
||||
|
||||
class Type(str, Enum):
|
||||
simple = 'simple'
|
||||
down_back = 'down_back'
|
||||
forward_up = 'forward_up'
|
||||
right_turn_forward = 'right_turn_forward'
|
||||
left_turn_forward = 'left_turn_forward'
|
||||
|
||||
|
||||
class CameraControl(BaseModel):
|
||||
config: Optional[Config] = None
|
||||
type: Optional[Type] = Field(None, description='Predefined camera movements type')
|
||||
|
||||
|
||||
class Duration(str, Enum):
|
||||
field_5 = 5
|
||||
field_10 = 10
|
||||
|
||||
|
||||
class Mode(str, Enum):
|
||||
std = 'std'
|
||||
pro = 'pro'
|
||||
|
||||
|
||||
class TaskInfo(BaseModel):
|
||||
external_task_id: Optional[str] = None
|
||||
|
||||
|
||||
class Video(BaseModel):
|
||||
duration: Optional[str] = Field(None, description='Total video duration')
|
||||
id: Optional[str] = Field(None, description='Generated video ID')
|
||||
url: Optional[AnyUrl] = Field(None, description='URL for generated video')
|
||||
|
||||
|
||||
class TaskResult(BaseModel):
|
||||
videos: Optional[List[Video]] = None
|
||||
|
||||
|
||||
class TaskStatus(str, Enum):
|
||||
submitted = 'submitted'
|
||||
processing = 'processing'
|
||||
succeed = 'succeed'
|
||||
failed = 'failed'
|
||||
|
||||
|
||||
class Data(BaseModel):
|
||||
created_at: Optional[int] = Field(None, description='Task creation time')
|
||||
task_id: Optional[str] = Field(None, description='Task ID')
|
||||
task_info: Optional[TaskInfo] = None
|
||||
task_result: Optional[TaskResult] = None
|
||||
task_status: Optional[TaskStatus] = None
|
||||
updated_at: Optional[int] = Field(None, description='Task update time')
|
||||
|
||||
|
||||
class AspectRatio1(str, Enum):
|
||||
field_16_9 = '16:9'
|
||||
field_9_16 = '9:16'
|
||||
field_1_1 = '1:1'
|
||||
field_4_3 = '4:3'
|
||||
field_3_4 = '3:4'
|
||||
field_3_2 = '3:2'
|
||||
field_2_3 = '2:3'
|
||||
field_21_9 = '21:9'
|
||||
|
||||
|
||||
class ImageReference(str, Enum):
|
||||
subject = 'subject'
|
||||
face = 'face'
|
||||
|
||||
|
||||
class Image(BaseModel):
|
||||
index: Optional[int] = Field(None, description='Image Number (0-9)')
|
||||
url: Optional[AnyUrl] = Field(None, description='URL for generated image')
|
||||
|
||||
|
||||
class TaskResult1(BaseModel):
|
||||
images: Optional[List[Image]] = None
|
||||
|
||||
|
||||
class Data1(BaseModel):
|
||||
created_at: Optional[int] = Field(None, description='Task creation time')
|
||||
task_id: Optional[str] = Field(None, description='Task ID')
|
||||
task_result: Optional[TaskResult1] = None
|
||||
task_status: Optional[TaskStatus] = None
|
||||
task_status_msg: Optional[str] = Field(None, description='Task status information')
|
||||
updated_at: Optional[int] = Field(None, description='Task update time')
|
||||
|
||||
|
||||
class AspectRatio2(str, Enum):
|
||||
field_16_9 = '16:9'
|
||||
field_9_16 = '9:16'
|
||||
field_1_1 = '1:1'
|
||||
|
||||
|
||||
class CameraControl1(BaseModel):
|
||||
config: Optional[Config] = None
|
||||
type: Optional[Type] = Field(None, description='Predefined camera movements type')
|
||||
|
||||
|
||||
class ModelName2(str, Enum):
|
||||
kling_v1 = 'kling-v1'
|
||||
kling_v1_6 = 'kling-v1-6'
|
||||
|
||||
|
||||
class TaskResult2(BaseModel):
|
||||
videos: Optional[List[Video]] = None
|
||||
|
||||
|
||||
class Data2(BaseModel):
|
||||
created_at: Optional[int] = Field(None, description='Task creation time')
|
||||
task_id: Optional[str] = Field(None, description='Task ID')
|
||||
task_info: Optional[TaskInfo] = None
|
||||
task_result: Optional[TaskResult2] = None
|
||||
task_status: Optional[TaskStatus] = None
|
||||
updated_at: Optional[int] = Field(None, description='Task update time')
|
||||
|
||||
|
||||
class Code2(Enum):
|
||||
int_1200 = 1200
|
||||
int_1201 = 1201
|
||||
int_1202 = 1202
|
||||
int_1203 = 1203
|
||||
|
||||
|
||||
class ResourcePackType(str, Enum):
|
||||
decreasing_total = 'decreasing_total'
|
||||
constant_period = 'constant_period'
|
||||
|
||||
|
||||
class Status(str, Enum):
|
||||
toBeOnline = 'toBeOnline'
|
||||
online = 'online'
|
||||
expired = 'expired'
|
||||
runOut = 'runOut'
|
||||
|
||||
|
||||
class ResourcePackSubscribeInfo(BaseModel):
|
||||
effective_time: Optional[int] = Field(
|
||||
None, description='Effective time, Unix timestamp in ms'
|
||||
)
|
||||
invalid_time: Optional[int] = Field(
|
||||
None, description='Expiration time, Unix timestamp in ms'
|
||||
)
|
||||
purchase_time: Optional[int] = Field(
|
||||
None, description='Purchase time, Unix timestamp in ms'
|
||||
)
|
||||
remaining_quantity: Optional[float] = Field(
|
||||
None, description='Remaining quantity (updated with a 12-hour delay)'
|
||||
)
|
||||
resource_pack_id: Optional[str] = Field(None, description='Resource package ID')
|
||||
resource_pack_name: Optional[str] = Field(None, description='Resource package name')
|
||||
resource_pack_type: Optional[ResourcePackType] = Field(
|
||||
None,
|
||||
description='Resource package type (decreasing_total=decreasing total, constant_period=constant periodicity)',
|
||||
)
|
||||
status: Optional[Status] = Field(None, description='Resource Package Status')
|
||||
total_quantity: Optional[float] = Field(None, description='Total quantity')
|
||||
|
||||
class Background(str, Enum):
|
||||
transparent = 'transparent'
|
||||
opaque = 'opaque'
|
||||
|
||||
|
||||
class Moderation(str, Enum):
|
||||
low = 'low'
|
||||
auto = 'auto'
|
||||
|
||||
|
||||
class OutputFormat(str, Enum):
|
||||
png = 'png'
|
||||
webp = 'webp'
|
||||
jpeg = 'jpeg'
|
||||
|
||||
|
||||
class Quality(str, Enum):
|
||||
low = 'low'
|
||||
medium = 'medium'
|
||||
high = 'high'
|
||||
|
||||
|
||||
class OpenAIImageEditRequest(BaseModel):
|
||||
background: Optional[str] = Field(
|
||||
None, description='Background transparency', examples=['opaque']
|
||||
)
|
||||
model: str = Field(
|
||||
..., description='The model to use for image editing', examples=['gpt-image-1']
|
||||
)
|
||||
moderation: Optional[Moderation] = Field(
|
||||
None, description='Content moderation setting', examples=['auto']
|
||||
)
|
||||
n: Optional[int] = Field(
|
||||
None, description='The number of images to generate', examples=[1]
|
||||
)
|
||||
output_compression: Optional[int] = Field(
|
||||
None, description='Compression level for JPEG or WebP (0-100)', examples=[100]
|
||||
)
|
||||
output_format: Optional[OutputFormat] = Field(
|
||||
None, description='Format of the output image', examples=['png']
|
||||
)
|
||||
prompt: str = Field(
|
||||
...,
|
||||
description='A text description of the desired edit',
|
||||
examples=['Give the rocketship rainbow coloring'],
|
||||
)
|
||||
quality: Optional[str] = Field(
|
||||
None, description='The quality of the edited image', examples=['low']
|
||||
)
|
||||
size: Optional[str] = Field(
|
||||
None, description='Size of the output image', examples=['1024x1024']
|
||||
)
|
||||
user: Optional[str] = Field(
|
||||
None,
|
||||
description='A unique identifier for end-user monitoring',
|
||||
examples=['user-1234'],
|
||||
)
|
||||
|
||||
|
||||
class Quality1(str, Enum):
|
||||
low = 'low'
|
||||
medium = 'medium'
|
||||
high = 'high'
|
||||
standard = 'standard'
|
||||
hd = 'hd'
|
||||
|
||||
|
||||
class ResponseFormat(str, Enum):
|
||||
url = 'url'
|
||||
b64_json = 'b64_json'
|
||||
|
||||
|
||||
class Style(str, Enum):
|
||||
vivid = 'vivid'
|
||||
natural = 'natural'
|
||||
|
||||
|
||||
class OpenAIImageGenerationRequest(BaseModel):
|
||||
background: Optional[Background] = Field(
|
||||
None, description='Background transparency', examples=['opaque']
|
||||
)
|
||||
model: Optional[str] = Field(
|
||||
None, description='The model to use for image generation', examples=['dall-e-3']
|
||||
)
|
||||
moderation: Optional[Moderation] = Field(
|
||||
None, description='Content moderation setting', examples=['auto']
|
||||
)
|
||||
n: Optional[int] = Field(
|
||||
None,
|
||||
description='The number of images to generate (1-10). Only 1 supported for dall-e-3.',
|
||||
examples=[1],
|
||||
)
|
||||
output_compression: Optional[int] = Field(
|
||||
None, description='Compression level for JPEG or WebP (0-100)', examples=[100]
|
||||
)
|
||||
output_format: Optional[OutputFormat] = Field(
|
||||
None, description='Format of the output image', examples=['png']
|
||||
)
|
||||
prompt: str = Field(
|
||||
...,
|
||||
description='A text description of the desired image',
|
||||
examples=['Draw a rocket in front of a blackhole in deep space'],
|
||||
)
|
||||
quality: Optional[Quality1] = Field(
|
||||
None, description='The quality of the generated image', examples=['high']
|
||||
)
|
||||
response_format: Optional[ResponseFormat] = Field(
|
||||
None, description='Response format of image data', examples=['b64_json']
|
||||
)
|
||||
size: Optional[str] = Field(
|
||||
None,
|
||||
description='Size of the image (e.g., 1024x1024, 1536x1024, auto)',
|
||||
examples=['1024x1536'],
|
||||
)
|
||||
style: Optional[Style] = Field(
|
||||
None, description='Style of the image (only for dall-e-3)', examples=['vivid']
|
||||
)
|
||||
user: Optional[str] = Field(
|
||||
None,
|
||||
description='A unique identifier for end-user monitoring',
|
||||
examples=['user-1234'],
|
||||
)
|
||||
|
||||
|
||||
class Datum1(BaseModel):
|
||||
b64_json: Optional[str] = Field(None, description='Base64 encoded image data')
|
||||
revised_prompt: Optional[str] = Field(None, description='Revised prompt')
|
||||
url: Optional[str] = Field(None, description='URL of the image')
|
||||
|
||||
|
||||
class OpenAIImageGenerationResponse(BaseModel):
|
||||
data: Optional[List[Datum1]] = None
|
||||
class User(BaseModel):
|
||||
email: Optional[str] = Field(None, description='The email address for this user.')
|
||||
id: Optional[str] = Field(None, description='The unique id for this user.')
|
||||
isAdmin: Optional[bool] = Field(
|
||||
None, description='Indicates if the user has admin privileges.'
|
||||
)
|
||||
isApproved: Optional[bool] = Field(
|
||||
None, description='Indicates if the user is approved.'
|
||||
)
|
||||
name: Optional[str] = Field(None, description='The name for this user.')
|
||||
341
comfy_api_nodes/apis/client.py
Normal file
341
comfy_api_nodes/apis/client.py
Normal file
@@ -0,0 +1,341 @@
|
||||
import logging
|
||||
|
||||
"""
|
||||
API Client Framework for api.comfy.org.
|
||||
|
||||
This module provides a flexible framework for making API requests from ComfyUI nodes.
|
||||
It supports both synchronous and asynchronous API operations with proper type validation.
|
||||
|
||||
Key Components:
|
||||
--------------
|
||||
1. ApiClient - Handles HTTP requests with authentication and error handling
|
||||
2. ApiEndpoint - Defines a single HTTP endpoint with its request/response models
|
||||
3. ApiOperation - Executes a single synchronous API operation
|
||||
|
||||
Usage Examples:
|
||||
--------------
|
||||
|
||||
# Example 1: Synchronous API Operation
|
||||
# ------------------------------------
|
||||
# For a simple API call that returns the result immediately:
|
||||
|
||||
# 1. Create the API client
|
||||
api_client = ApiClient(
|
||||
base_url="https://api.example.com",
|
||||
api_key="your_api_key_here",
|
||||
timeout=30.0,
|
||||
verify_ssl=True
|
||||
)
|
||||
|
||||
# 2. Define the endpoint
|
||||
user_info_endpoint = ApiEndpoint(
|
||||
path="/v1/users/me",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest, # No request body needed
|
||||
response_model=UserProfile, # Pydantic model for the response
|
||||
query_params=None
|
||||
)
|
||||
|
||||
# 3. Create the request object
|
||||
request = EmptyRequest()
|
||||
|
||||
# 4. Create and execute the operation
|
||||
operation = ApiOperation(
|
||||
endpoint=user_info_endpoint,
|
||||
request=request
|
||||
)
|
||||
user_profile = operation.execute(client=api_client) # Returns immediately with the result
|
||||
|
||||
"""
|
||||
|
||||
from typing import (
|
||||
Dict,
|
||||
Type,
|
||||
Optional,
|
||||
Any,
|
||||
TypeVar,
|
||||
Generic,
|
||||
)
|
||||
from pydantic import BaseModel
|
||||
from enum import Enum
|
||||
import json
|
||||
import requests
|
||||
from urllib.parse import urljoin
|
||||
|
||||
T = TypeVar("T", bound=BaseModel)
|
||||
R = TypeVar("R", bound=BaseModel)
|
||||
|
||||
class EmptyRequest(BaseModel):
|
||||
"""Base class for empty request bodies.
|
||||
For GET requests, fields will be sent as query parameters."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class HttpMethod(str, Enum):
|
||||
GET = "GET"
|
||||
POST = "POST"
|
||||
PUT = "PUT"
|
||||
DELETE = "DELETE"
|
||||
PATCH = "PATCH"
|
||||
|
||||
|
||||
class ApiClient:
|
||||
"""
|
||||
Client for making HTTP requests to an API with authentication and error handling.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
base_url: str,
|
||||
api_key: Optional[str] = None,
|
||||
timeout: float = 30.0,
|
||||
verify_ssl: bool = True,
|
||||
):
|
||||
self.base_url = base_url
|
||||
self.api_key = api_key
|
||||
self.timeout = timeout
|
||||
self.verify_ssl = verify_ssl
|
||||
|
||||
def get_headers(self) -> Dict[str, str]:
|
||||
"""Get headers for API requests, including authentication if available"""
|
||||
headers = {"Content-Type": "application/json", "Accept": "application/json"}
|
||||
|
||||
if self.api_key:
|
||||
headers["Authorization"] = f"Bearer {self.api_key}"
|
||||
|
||||
return headers
|
||||
|
||||
def request(
|
||||
self,
|
||||
method: str,
|
||||
path: str,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
json: Optional[Dict[str, Any]] = None,
|
||||
files: Optional[Dict[str, Any]] = None,
|
||||
headers: Optional[Dict[str, str]] = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Make an HTTP request to the API
|
||||
|
||||
Args:
|
||||
method: HTTP method (GET, POST, etc.)
|
||||
path: API endpoint path (will be joined with base_url)
|
||||
params: Query parameters
|
||||
json: JSON body data
|
||||
files: Files to upload
|
||||
headers: Additional headers
|
||||
|
||||
Returns:
|
||||
Parsed JSON response
|
||||
|
||||
Raises:
|
||||
requests.RequestException: If the request fails
|
||||
"""
|
||||
url = urljoin(self.base_url, path)
|
||||
self.check_auth_token(self.api_key)
|
||||
# Combine default headers with any provided headers
|
||||
request_headers = self.get_headers()
|
||||
if headers:
|
||||
request_headers.update(headers)
|
||||
|
||||
# Let requests handle the content type when files are present.
|
||||
if files:
|
||||
del request_headers["Content-Type"]
|
||||
|
||||
logging.debug(f"[DEBUG] Request Headers: {request_headers}")
|
||||
logging.debug(f"[DEBUG] Files: {files}")
|
||||
logging.debug(f"[DEBUG] Params: {params}")
|
||||
logging.debug(f"[DEBUG] Json: {json}")
|
||||
|
||||
try:
|
||||
# If files are present, use data parameter instead of json
|
||||
if files:
|
||||
form_data = {}
|
||||
if json:
|
||||
form_data.update(json)
|
||||
response = requests.request(
|
||||
method=method,
|
||||
url=url,
|
||||
params=params,
|
||||
data=form_data, # Use data instead of json
|
||||
files=files,
|
||||
headers=request_headers,
|
||||
timeout=self.timeout,
|
||||
verify=self.verify_ssl,
|
||||
)
|
||||
else:
|
||||
response = requests.request(
|
||||
method=method,
|
||||
url=url,
|
||||
params=params,
|
||||
json=json,
|
||||
headers=request_headers,
|
||||
timeout=self.timeout,
|
||||
verify=self.verify_ssl,
|
||||
)
|
||||
|
||||
# Raise exception for error status codes
|
||||
response.raise_for_status()
|
||||
except requests.ConnectionError:
|
||||
raise Exception(
|
||||
f"Unable to connect to the API server at {self.base_url}. Please check your internet connection or verify the service is available."
|
||||
)
|
||||
|
||||
except requests.Timeout:
|
||||
raise Exception(
|
||||
f"Request timed out after {self.timeout} seconds. The server might be experiencing high load or the operation is taking longer than expected."
|
||||
)
|
||||
|
||||
except requests.HTTPError as e:
|
||||
status_code = e.response.status_code if hasattr(e, "response") else None
|
||||
error_message = f"HTTP Error: {str(e)}"
|
||||
|
||||
# Try to extract detailed error message from JSON response
|
||||
try:
|
||||
if hasattr(e, "response") and e.response.content:
|
||||
error_json = e.response.json()
|
||||
if "error" in error_json and "message" in error_json["error"]:
|
||||
error_message = f"API Error: {error_json['error']['message']}"
|
||||
if "type" in error_json["error"]:
|
||||
error_message += f" (Type: {error_json['error']['type']})"
|
||||
else:
|
||||
error_message = f"API Error: {error_json}"
|
||||
except Exception as json_error:
|
||||
# If we can't parse the JSON, fall back to the original error message
|
||||
logging.debug(f"[DEBUG] Failed to parse error response: {str(json_error)}")
|
||||
|
||||
logging.debug(f"[DEBUG] API Error: {error_message} (Status: {status_code})")
|
||||
if hasattr(e, "response") and e.response.content:
|
||||
logging.debug(f"[DEBUG] Response content: {e.response.content}")
|
||||
if status_code == 401:
|
||||
error_message = "Unauthorized: Please login first to use this node."
|
||||
if status_code == 402:
|
||||
error_message = "Payment Required: Please add credits to your account to use this node."
|
||||
if status_code == 409:
|
||||
error_message = "There is a problem with your account. Please contact support@comfy.org. "
|
||||
if status_code == 429:
|
||||
error_message = "Rate Limit Exceeded: Please try again later."
|
||||
raise Exception(error_message)
|
||||
|
||||
# Parse and return JSON response
|
||||
if response.content:
|
||||
return response.json()
|
||||
return {}
|
||||
|
||||
def check_auth_token(self, auth_token):
|
||||
"""Verify that an auth token is present."""
|
||||
if auth_token is None:
|
||||
raise Exception("Unauthorized: Please login first to use this node.")
|
||||
return auth_token
|
||||
|
||||
|
||||
class ApiEndpoint(Generic[T, R]):
|
||||
"""Defines an API endpoint with its request and response types"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
path: str,
|
||||
method: HttpMethod,
|
||||
request_model: Type[T],
|
||||
response_model: Type[R],
|
||||
query_params: Optional[Dict[str, Any]] = None,
|
||||
):
|
||||
"""Initialize an API endpoint definition.
|
||||
|
||||
Args:
|
||||
path: The URL path for this endpoint, can include placeholders like {id}
|
||||
method: The HTTP method to use (GET, POST, etc.)
|
||||
request_model: Pydantic model class that defines the structure and validation rules for API requests to this endpoint
|
||||
response_model: Pydantic model class that defines the structure and validation rules for API responses from this endpoint
|
||||
query_params: Optional dictionary of query parameters to include in the request
|
||||
"""
|
||||
self.path = path
|
||||
self.method = method
|
||||
self.request_model = request_model
|
||||
self.response_model = response_model
|
||||
self.query_params = query_params or {}
|
||||
|
||||
|
||||
class SynchronousOperation(Generic[T, R]):
|
||||
"""
|
||||
Represents a single synchronous API operation.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
endpoint: ApiEndpoint[T, R],
|
||||
request: T,
|
||||
files: Optional[Dict[str, Any]] = None,
|
||||
api_base: str = "https://api.comfy.org",
|
||||
auth_token: Optional[str] = None,
|
||||
timeout: float = 604800.0,
|
||||
verify_ssl: bool = True,
|
||||
):
|
||||
self.endpoint = endpoint
|
||||
self.request = request
|
||||
self.response = None
|
||||
self.error = None
|
||||
self.api_base = api_base
|
||||
self.auth_token = auth_token
|
||||
self.timeout = timeout
|
||||
self.verify_ssl = verify_ssl
|
||||
self.files = files
|
||||
def execute(self, client: Optional[ApiClient] = None) -> R:
|
||||
"""Execute the API operation using the provided client or create one"""
|
||||
try:
|
||||
# Create client if not provided
|
||||
if client is None:
|
||||
if self.api_base is None:
|
||||
raise ValueError("Either client or api_base must be provided")
|
||||
client = ApiClient(
|
||||
base_url=self.api_base,
|
||||
api_key=self.auth_token,
|
||||
timeout=self.timeout,
|
||||
verify_ssl=self.verify_ssl,
|
||||
)
|
||||
|
||||
# Convert request model to dict, but use None for EmptyRequest
|
||||
request_dict = None if isinstance(self.request, EmptyRequest) else self.request.model_dump(exclude_none=True)
|
||||
if request_dict:
|
||||
for key, value in request_dict.items():
|
||||
if isinstance(value, Enum):
|
||||
request_dict[key] = value.value
|
||||
|
||||
# Debug log for request
|
||||
logging.debug(f"[DEBUG] API Request: {self.endpoint.method.value} {self.endpoint.path}")
|
||||
logging.debug(f"[DEBUG] Request Data: {json.dumps(request_dict, indent=2)}")
|
||||
logging.debug(f"[DEBUG] Query Params: {self.endpoint.query_params}")
|
||||
|
||||
# Make the request
|
||||
resp = client.request(
|
||||
method=self.endpoint.method.value,
|
||||
path=self.endpoint.path,
|
||||
json=request_dict,
|
||||
params=self.endpoint.query_params,
|
||||
files=self.files,
|
||||
)
|
||||
|
||||
# Debug log for response
|
||||
logging.debug("=" * 50)
|
||||
logging.debug("[DEBUG] RESPONSE DETAILS:")
|
||||
logging.debug("[DEBUG] Status Code: 200 (Success)")
|
||||
logging.debug(f"[DEBUG] Response Body: {json.dumps(resp, indent=2)}")
|
||||
logging.debug("=" * 50)
|
||||
|
||||
# Parse and return the response
|
||||
return self._parse_response(resp)
|
||||
|
||||
except Exception as e:
|
||||
logging.debug(f"[DEBUG] API Exception: {str(e)}")
|
||||
raise Exception(str(e))
|
||||
|
||||
def _parse_response(self, resp):
|
||||
"""Parse response data - can be overridden by subclasses"""
|
||||
# The response is already the complete object, don't extract just the "data" field
|
||||
# as that would lose the outer structure (created timestamp, etc.)
|
||||
|
||||
# Parse response using the provided model
|
||||
self.response = self.endpoint.response_model.model_validate(resp)
|
||||
logging.debug(f"[DEBUG] Parsed Response: {self.response}")
|
||||
return self.response
|
||||
449
comfy_api_nodes/nodes_api.py
Normal file
449
comfy_api_nodes/nodes_api.py
Normal file
@@ -0,0 +1,449 @@
|
||||
import base64
|
||||
import io
|
||||
import math
|
||||
from inspect import cleandoc
|
||||
|
||||
import numpy as np
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict
|
||||
from comfy.utils import common_upscale
|
||||
from comfy_api_nodes.apis import (
|
||||
OpenAIImageEditRequest,
|
||||
OpenAIImageGenerationRequest,
|
||||
OpenAIImageGenerationResponse,
|
||||
)
|
||||
from comfy_api_nodes.apis.client import ApiEndpoint, HttpMethod, SynchronousOperation
|
||||
|
||||
|
||||
def downscale_input(image):
|
||||
samples = image.movedim(-1,1)
|
||||
#downscaling input images to roughly the same size as the outputs
|
||||
total = int(1536 * 1024)
|
||||
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
|
||||
if scale_by >= 1:
|
||||
return image
|
||||
width = round(samples.shape[3] * scale_by)
|
||||
height = round(samples.shape[2] * scale_by)
|
||||
|
||||
s = common_upscale(samples, width, height, "lanczos", "disabled")
|
||||
s = s.movedim(1,-1)
|
||||
return s
|
||||
|
||||
def validate_and_cast_response(response):
|
||||
# validate raw JSON response
|
||||
data = response.data
|
||||
if not data or len(data) == 0:
|
||||
raise Exception("No images returned from API endpoint")
|
||||
|
||||
# Initialize list to store image tensors
|
||||
image_tensors = []
|
||||
|
||||
# Process each image in the data array
|
||||
for image_data in data:
|
||||
image_url = image_data.url
|
||||
b64_data = image_data.b64_json
|
||||
|
||||
if not image_url and not b64_data:
|
||||
raise Exception("No image was generated in the response")
|
||||
|
||||
if b64_data:
|
||||
img_data = base64.b64decode(b64_data)
|
||||
img = Image.open(io.BytesIO(img_data))
|
||||
|
||||
elif image_url:
|
||||
img_response = requests.get(image_url)
|
||||
if img_response.status_code != 200:
|
||||
raise Exception("Failed to download the image")
|
||||
img = Image.open(io.BytesIO(img_response.content))
|
||||
|
||||
img = img.convert("RGBA")
|
||||
|
||||
# Convert to numpy array, normalize to float32 between 0 and 1
|
||||
img_array = np.array(img).astype(np.float32) / 255.0
|
||||
img_tensor = torch.from_numpy(img_array)
|
||||
|
||||
# Add to list of tensors
|
||||
image_tensors.append(img_tensor)
|
||||
|
||||
return torch.stack(image_tensors, dim=0)
|
||||
|
||||
class OpenAIDalle2(ComfyNodeABC):
|
||||
"""
|
||||
Generates images synchronously via OpenAI's DALL·E 2 endpoint.
|
||||
|
||||
Uses the proxy at /proxy/openai/images/generations. Returned URLs are short‑lived,
|
||||
so download or cache results if you need to keep them.
|
||||
"""
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypeDict:
|
||||
return {
|
||||
"required": {
|
||||
"prompt": (IO.STRING, {
|
||||
"multiline": True,
|
||||
"default": "",
|
||||
"tooltip": "Text prompt for DALL·E",
|
||||
}),
|
||||
},
|
||||
"optional": {
|
||||
"seed": (IO.INT, {
|
||||
"default": 0,
|
||||
"min": 0,
|
||||
"max": 2**31-1,
|
||||
"step": 1,
|
||||
"display": "number",
|
||||
"tooltip": "not implemented yet in backend",
|
||||
}),
|
||||
"size": (IO.COMBO, {
|
||||
"options": ["256x256", "512x512", "1024x1024"],
|
||||
"default": "1024x1024",
|
||||
"tooltip": "Image size",
|
||||
}),
|
||||
"n": (IO.INT, {
|
||||
"default": 1,
|
||||
"min": 1,
|
||||
"max": 8,
|
||||
"step": 1,
|
||||
"display": "number",
|
||||
"tooltip": "How many images to generate",
|
||||
}),
|
||||
"image": (IO.IMAGE, {
|
||||
"default": None,
|
||||
"tooltip": "Optional reference image for image editing.",
|
||||
}),
|
||||
"mask": (IO.MASK, {
|
||||
"default": None,
|
||||
"tooltip": "Optional mask for inpainting (white areas will be replaced)",
|
||||
}),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG"
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = (IO.IMAGE,)
|
||||
FUNCTION = "api_call"
|
||||
CATEGORY = "api node"
|
||||
DESCRIPTION = cleandoc(__doc__ or "")
|
||||
API_NODE = True
|
||||
|
||||
def api_call(self, prompt, seed=0, image=None, mask=None, n=1, size="1024x1024", auth_token=None):
|
||||
model = "dall-e-2"
|
||||
path = "/proxy/openai/images/generations"
|
||||
request_class = OpenAIImageGenerationRequest
|
||||
img_binary = None
|
||||
|
||||
if image is not None and mask is not None:
|
||||
path = "/proxy/openai/images/edits"
|
||||
request_class = OpenAIImageEditRequest
|
||||
|
||||
input_tensor = image.squeeze().cpu()
|
||||
height, width, channels = input_tensor.shape
|
||||
rgba_tensor = torch.ones(height, width, 4, device="cpu")
|
||||
rgba_tensor[:, :, :channels] = input_tensor
|
||||
|
||||
if mask.shape[1:] != image.shape[1:-1]:
|
||||
raise Exception("Mask and Image must be the same size")
|
||||
rgba_tensor[:,:,3] = (1-mask.squeeze().cpu())
|
||||
|
||||
rgba_tensor = downscale_input(rgba_tensor.unsqueeze(0)).squeeze()
|
||||
|
||||
image_np = (rgba_tensor.numpy() * 255).astype(np.uint8)
|
||||
img = Image.fromarray(image_np)
|
||||
img_byte_arr = io.BytesIO()
|
||||
img.save(img_byte_arr, format='PNG')
|
||||
img_byte_arr.seek(0)
|
||||
img_binary = img_byte_arr#.getvalue()
|
||||
img_binary.name = "image.png"
|
||||
elif image is not None or mask is not None:
|
||||
raise Exception("Dall-E 2 image editing requires an image AND a mask")
|
||||
|
||||
# Build the operation
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path=path,
|
||||
method=HttpMethod.POST,
|
||||
request_model=request_class,
|
||||
response_model=OpenAIImageGenerationResponse
|
||||
),
|
||||
request=request_class(
|
||||
model=model,
|
||||
prompt=prompt,
|
||||
n=n,
|
||||
size=size,
|
||||
seed=seed,
|
||||
),
|
||||
files={
|
||||
"image": img_binary,
|
||||
} if img_binary else None,
|
||||
auth_token=auth_token
|
||||
)
|
||||
|
||||
response = operation.execute()
|
||||
|
||||
img_tensor = validate_and_cast_response(response)
|
||||
return (img_tensor,)
|
||||
|
||||
class OpenAIDalle3(ComfyNodeABC):
|
||||
"""
|
||||
Generates images synchronously via OpenAI's DALL·E 3 endpoint.
|
||||
|
||||
Uses the proxy at /proxy/openai/images/generations. Returned URLs are short‑lived,
|
||||
so download or cache results if you need to keep them.
|
||||
"""
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypeDict:
|
||||
return {
|
||||
"required": {
|
||||
"prompt": (IO.STRING, {
|
||||
"multiline": True,
|
||||
"default": "",
|
||||
"tooltip": "Text prompt for DALL·E",
|
||||
}),
|
||||
},
|
||||
"optional": {
|
||||
"seed": (IO.INT, {
|
||||
"default": 0,
|
||||
"min": 0,
|
||||
"max": 2**31-1,
|
||||
"step": 1,
|
||||
"display": "number",
|
||||
"tooltip": "not implemented yet in backend",
|
||||
}),
|
||||
"quality" : (IO.COMBO, {
|
||||
"options": ["standard","hd"],
|
||||
"default": "standard",
|
||||
"tooltip": "Image quality",
|
||||
}),
|
||||
"style": (IO.COMBO, {
|
||||
"options": ["natural","vivid"],
|
||||
"default": "natural",
|
||||
"tooltip": "Vivid causes the model to lean towards generating hyper-real and dramatic images. Natural causes the model to produce more natural, less hyper-real looking images.",
|
||||
}),
|
||||
"size": (IO.COMBO, {
|
||||
"options": ["1024x1024", "1024x1792", "1792x1024"],
|
||||
"default": "1024x1024",
|
||||
"tooltip": "Image size",
|
||||
}),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG"
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = (IO.IMAGE,)
|
||||
FUNCTION = "api_call"
|
||||
CATEGORY = "api node"
|
||||
DESCRIPTION = cleandoc(__doc__ or "")
|
||||
API_NODE = True
|
||||
|
||||
def api_call(self, prompt, seed=0, style="natural", quality="standard", size="1024x1024", auth_token=None):
|
||||
model = "dall-e-3"
|
||||
|
||||
# build the operation
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/openai/images/generations",
|
||||
method=HttpMethod.POST,
|
||||
request_model=OpenAIImageGenerationRequest,
|
||||
response_model=OpenAIImageGenerationResponse
|
||||
),
|
||||
request=OpenAIImageGenerationRequest(
|
||||
model=model,
|
||||
prompt=prompt,
|
||||
quality=quality,
|
||||
size=size,
|
||||
style=style,
|
||||
seed=seed,
|
||||
),
|
||||
auth_token=auth_token
|
||||
)
|
||||
|
||||
response = operation.execute()
|
||||
|
||||
img_tensor = validate_and_cast_response(response)
|
||||
return (img_tensor,)
|
||||
|
||||
class OpenAIGPTImage1(ComfyNodeABC):
|
||||
"""
|
||||
Generates images synchronously via OpenAI's GPT Image 1 endpoint.
|
||||
|
||||
Uses the proxy at /proxy/openai/images/generations. Returned URLs are short‑lived,
|
||||
so download or cache results if you need to keep them.
|
||||
"""
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls) -> InputTypeDict:
|
||||
return {
|
||||
"required": {
|
||||
"prompt": (IO.STRING, {
|
||||
"multiline": True,
|
||||
"default": "",
|
||||
"tooltip": "Text prompt for GPT Image 1",
|
||||
}),
|
||||
},
|
||||
"optional": {
|
||||
"seed": (IO.INT, {
|
||||
"default": 0,
|
||||
"min": 0,
|
||||
"max": 2**31-1,
|
||||
"step": 1,
|
||||
"display": "number",
|
||||
"tooltip": "not implemented yet in backend",
|
||||
}),
|
||||
"quality": (IO.COMBO, {
|
||||
"options": ["low","medium","high"],
|
||||
"default": "low",
|
||||
"tooltip": "Image quality, affects cost and generation time.",
|
||||
}),
|
||||
"background": (IO.COMBO, {
|
||||
"options": ["opaque","transparent"],
|
||||
"default": "opaque",
|
||||
"tooltip": "Return image with or without background",
|
||||
}),
|
||||
"size": (IO.COMBO, {
|
||||
"options": ["auto", "1024x1024", "1024x1536", "1536x1024"],
|
||||
"default": "auto",
|
||||
"tooltip": "Image size",
|
||||
}),
|
||||
"n": (IO.INT, {
|
||||
"default": 1,
|
||||
"min": 1,
|
||||
"max": 8,
|
||||
"step": 1,
|
||||
"display": "number",
|
||||
"tooltip": "How many images to generate",
|
||||
}),
|
||||
"image": (IO.IMAGE, {
|
||||
"default": None,
|
||||
"tooltip": "Optional reference image for image editing.",
|
||||
}),
|
||||
"mask": (IO.MASK, {
|
||||
"default": None,
|
||||
"tooltip": "Optional mask for inpainting (white areas will be replaced)",
|
||||
}),
|
||||
"moderation": (IO.COMBO, {
|
||||
"options": ["low","auto"],
|
||||
"default": "low",
|
||||
"tooltip": "Moderation level",
|
||||
}),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG"
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = (IO.IMAGE,)
|
||||
FUNCTION = "api_call"
|
||||
CATEGORY = "api node"
|
||||
DESCRIPTION = cleandoc(__doc__ or "")
|
||||
API_NODE = True
|
||||
|
||||
def api_call(self, prompt, seed=0, quality="low", background="opaque", image=None, mask=None, n=1, size="1024x1024", auth_token=None, moderation="low"):
|
||||
model = "gpt-image-1"
|
||||
path = "/proxy/openai/images/generations"
|
||||
request_class = OpenAIImageGenerationRequest
|
||||
img_binaries = []
|
||||
mask_binary = None
|
||||
files = []
|
||||
|
||||
if image is not None:
|
||||
path = "/proxy/openai/images/edits"
|
||||
request_class = OpenAIImageEditRequest
|
||||
|
||||
batch_size = image.shape[0]
|
||||
|
||||
|
||||
for i in range(batch_size):
|
||||
single_image = image[i:i+1]
|
||||
scaled_image = downscale_input(single_image).squeeze()
|
||||
|
||||
image_np = (scaled_image.numpy() * 255).astype(np.uint8)
|
||||
img = Image.fromarray(image_np)
|
||||
img_byte_arr = io.BytesIO()
|
||||
img.save(img_byte_arr, format='PNG')
|
||||
img_byte_arr.seek(0)
|
||||
img_binary = img_byte_arr
|
||||
img_binary.name = f"image_{i}.png"
|
||||
|
||||
img_binaries.append(img_binary)
|
||||
if batch_size == 1:
|
||||
files.append(("image", img_binary))
|
||||
else:
|
||||
files.append(("image[]", img_binary))
|
||||
|
||||
if mask is not None:
|
||||
if image.shape[0] != 1:
|
||||
raise Exception("Cannot use a mask with multiple image")
|
||||
if image is None:
|
||||
raise Exception("Cannot use a mask without an input image")
|
||||
if mask.shape[1:] != image.shape[1:-1]:
|
||||
raise Exception("Mask and Image must be the same size")
|
||||
batch, height, width = mask.shape
|
||||
rgba_mask = torch.zeros(height, width, 4, device="cpu")
|
||||
rgba_mask[:,:,3] = (1-mask.squeeze().cpu())
|
||||
|
||||
scaled_mask = downscale_input(rgba_mask.unsqueeze(0)).squeeze()
|
||||
|
||||
mask_np = (scaled_mask.numpy() * 255).astype(np.uint8)
|
||||
mask_img = Image.fromarray(mask_np)
|
||||
mask_img_byte_arr = io.BytesIO()
|
||||
mask_img.save(mask_img_byte_arr, format='PNG')
|
||||
mask_img_byte_arr.seek(0)
|
||||
mask_binary = mask_img_byte_arr
|
||||
mask_binary.name = "mask.png"
|
||||
files.append(("mask", mask_binary))
|
||||
|
||||
|
||||
# Build the operation
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path=path,
|
||||
method=HttpMethod.POST,
|
||||
request_model=request_class,
|
||||
response_model=OpenAIImageGenerationResponse
|
||||
),
|
||||
request=request_class(
|
||||
model=model,
|
||||
prompt=prompt,
|
||||
quality=quality,
|
||||
background=background,
|
||||
n=n,
|
||||
seed=seed,
|
||||
size=size,
|
||||
moderation=moderation,
|
||||
),
|
||||
files=files if files else None,
|
||||
auth_token=auth_token
|
||||
)
|
||||
|
||||
response = operation.execute()
|
||||
|
||||
img_tensor = validate_and_cast_response(response)
|
||||
return (img_tensor,)
|
||||
|
||||
|
||||
# A dictionary that contains all nodes you want to export with their names
|
||||
# NOTE: names should be globally unique
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"OpenAIDalle2": OpenAIDalle2,
|
||||
"OpenAIDalle3": OpenAIDalle3,
|
||||
"OpenAIGPTImage1": OpenAIGPTImage1,
|
||||
}
|
||||
|
||||
# A dictionary that contains the friendly/humanly readable titles for the nodes
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"OpenAIDalle2": "OpenAI DALL·E 2",
|
||||
"OpenAIDalle3": "OpenAI DALL·E 3",
|
||||
"OpenAIGPTImage1": "OpenAI GPT Image 1",
|
||||
}
|
||||
@@ -316,3 +316,156 @@ class LRUCache(BasicCache):
|
||||
self.children[cache_key].append(self.cache_key_set.get_data_key(child_id))
|
||||
return self
|
||||
|
||||
|
||||
class DependencyAwareCache(BasicCache):
|
||||
"""
|
||||
A cache implementation that tracks dependencies between nodes and manages
|
||||
their execution and caching accordingly. It extends the BasicCache class.
|
||||
Nodes are removed from this cache once all of their descendants have been
|
||||
executed.
|
||||
"""
|
||||
|
||||
def __init__(self, key_class):
|
||||
"""
|
||||
Initialize the DependencyAwareCache.
|
||||
|
||||
Args:
|
||||
key_class: The class used for generating cache keys.
|
||||
"""
|
||||
super().__init__(key_class)
|
||||
self.descendants = {} # Maps node_id -> set of descendant node_ids
|
||||
self.ancestors = {} # Maps node_id -> set of ancestor node_ids
|
||||
self.executed_nodes = set() # Tracks nodes that have been executed
|
||||
|
||||
def set_prompt(self, dynprompt, node_ids, is_changed_cache):
|
||||
"""
|
||||
Clear the entire cache and rebuild the dependency graph.
|
||||
|
||||
Args:
|
||||
dynprompt: The dynamic prompt object containing node information.
|
||||
node_ids: List of node IDs to initialize the cache for.
|
||||
is_changed_cache: Flag indicating if the cache has changed.
|
||||
"""
|
||||
# Clear all existing cache data
|
||||
self.cache.clear()
|
||||
self.subcaches.clear()
|
||||
self.descendants.clear()
|
||||
self.ancestors.clear()
|
||||
self.executed_nodes.clear()
|
||||
|
||||
# Call the parent method to initialize the cache with the new prompt
|
||||
super().set_prompt(dynprompt, node_ids, is_changed_cache)
|
||||
|
||||
# Rebuild the dependency graph
|
||||
self._build_dependency_graph(dynprompt, node_ids)
|
||||
|
||||
def _build_dependency_graph(self, dynprompt, node_ids):
|
||||
"""
|
||||
Build the dependency graph for all nodes.
|
||||
|
||||
Args:
|
||||
dynprompt: The dynamic prompt object containing node information.
|
||||
node_ids: List of node IDs to build the graph for.
|
||||
"""
|
||||
self.descendants.clear()
|
||||
self.ancestors.clear()
|
||||
for node_id in node_ids:
|
||||
self.descendants[node_id] = set()
|
||||
self.ancestors[node_id] = set()
|
||||
|
||||
for node_id in node_ids:
|
||||
inputs = dynprompt.get_node(node_id)["inputs"]
|
||||
for input_data in inputs.values():
|
||||
if is_link(input_data): # Check if the input is a link to another node
|
||||
ancestor_id = input_data[0]
|
||||
self.descendants[ancestor_id].add(node_id)
|
||||
self.ancestors[node_id].add(ancestor_id)
|
||||
|
||||
def set(self, node_id, value):
|
||||
"""
|
||||
Mark a node as executed and store its value in the cache.
|
||||
|
||||
Args:
|
||||
node_id: The ID of the node to store.
|
||||
value: The value to store for the node.
|
||||
"""
|
||||
self._set_immediate(node_id, value)
|
||||
self.executed_nodes.add(node_id)
|
||||
self._cleanup_ancestors(node_id)
|
||||
|
||||
def get(self, node_id):
|
||||
"""
|
||||
Retrieve the cached value for a node.
|
||||
|
||||
Args:
|
||||
node_id: The ID of the node to retrieve.
|
||||
|
||||
Returns:
|
||||
The cached value for the node.
|
||||
"""
|
||||
return self._get_immediate(node_id)
|
||||
|
||||
def ensure_subcache_for(self, node_id, children_ids):
|
||||
"""
|
||||
Ensure a subcache exists for a node and update dependencies.
|
||||
|
||||
Args:
|
||||
node_id: The ID of the parent node.
|
||||
children_ids: List of child node IDs to associate with the parent node.
|
||||
|
||||
Returns:
|
||||
The subcache object for the node.
|
||||
"""
|
||||
subcache = super()._ensure_subcache(node_id, children_ids)
|
||||
for child_id in children_ids:
|
||||
self.descendants[node_id].add(child_id)
|
||||
self.ancestors[child_id].add(node_id)
|
||||
return subcache
|
||||
|
||||
def _cleanup_ancestors(self, node_id):
|
||||
"""
|
||||
Check if ancestors of a node can be removed from the cache.
|
||||
|
||||
Args:
|
||||
node_id: The ID of the node whose ancestors are to be checked.
|
||||
"""
|
||||
for ancestor_id in self.ancestors.get(node_id, []):
|
||||
if ancestor_id in self.executed_nodes:
|
||||
# Remove ancestor if all its descendants have been executed
|
||||
if all(descendant in self.executed_nodes for descendant in self.descendants[ancestor_id]):
|
||||
self._remove_node(ancestor_id)
|
||||
|
||||
def _remove_node(self, node_id):
|
||||
"""
|
||||
Remove a node from the cache.
|
||||
|
||||
Args:
|
||||
node_id: The ID of the node to remove.
|
||||
"""
|
||||
cache_key = self.cache_key_set.get_data_key(node_id)
|
||||
if cache_key in self.cache:
|
||||
del self.cache[cache_key]
|
||||
subcache_key = self.cache_key_set.get_subcache_key(node_id)
|
||||
if subcache_key in self.subcaches:
|
||||
del self.subcaches[subcache_key]
|
||||
|
||||
def clean_unused(self):
|
||||
"""
|
||||
Clean up unused nodes. This is a no-op for this cache implementation.
|
||||
"""
|
||||
pass
|
||||
|
||||
def recursive_debug_dump(self):
|
||||
"""
|
||||
Dump the cache and dependency graph for debugging.
|
||||
|
||||
Returns:
|
||||
A list containing the cache state and dependency graph.
|
||||
"""
|
||||
result = super().recursive_debug_dump()
|
||||
result.append({
|
||||
"descendants": self.descendants,
|
||||
"ancestors": self.ancestors,
|
||||
"executed_nodes": list(self.executed_nodes),
|
||||
})
|
||||
return result
|
||||
|
||||
@@ -1,6 +1,9 @@
|
||||
import nodes
|
||||
from __future__ import annotations
|
||||
from typing import Type, Literal
|
||||
|
||||
import nodes
|
||||
from comfy_execution.graph_utils import is_link
|
||||
from comfy.comfy_types.node_typing import ComfyNodeABC, InputTypeDict, InputTypeOptions
|
||||
|
||||
class DependencyCycleError(Exception):
|
||||
pass
|
||||
@@ -54,7 +57,22 @@ class DynamicPrompt:
|
||||
def get_original_prompt(self):
|
||||
return self.original_prompt
|
||||
|
||||
def get_input_info(class_def, input_name, valid_inputs=None):
|
||||
def get_input_info(
|
||||
class_def: Type[ComfyNodeABC],
|
||||
input_name: str,
|
||||
valid_inputs: InputTypeDict | None = None
|
||||
) -> tuple[str, Literal["required", "optional", "hidden"], InputTypeOptions] | tuple[None, None, None]:
|
||||
"""Get the input type, category, and extra info for a given input name.
|
||||
|
||||
Arguments:
|
||||
class_def: The class definition of the node.
|
||||
input_name: The name of the input to get info for.
|
||||
valid_inputs: The valid inputs for the node, or None to use the class_def.INPUT_TYPES().
|
||||
|
||||
Returns:
|
||||
tuple[str, str, dict] | tuple[None, None, None]: The input type, category, and extra info for the input name.
|
||||
"""
|
||||
|
||||
valid_inputs = valid_inputs or class_def.INPUT_TYPES()
|
||||
input_info = None
|
||||
input_category = None
|
||||
@@ -126,7 +144,7 @@ class TopologicalSort:
|
||||
from_node_id, from_socket = value
|
||||
if subgraph_nodes is not None and from_node_id not in subgraph_nodes:
|
||||
continue
|
||||
input_type, input_category, input_info = self.get_input_info(unique_id, input_name)
|
||||
_, _, input_info = self.get_input_info(unique_id, input_name)
|
||||
is_lazy = input_info is not None and "lazy" in input_info and input_info["lazy"]
|
||||
if (include_lazy or not is_lazy) and not self.is_cached(from_node_id):
|
||||
node_ids.append(from_node_id)
|
||||
|
||||
45
comfy_extras/nodes_cfg.py
Normal file
45
comfy_extras/nodes_cfg.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import torch
|
||||
|
||||
# https://github.com/WeichenFan/CFG-Zero-star
|
||||
def optimized_scale(positive, negative):
|
||||
positive_flat = positive.reshape(positive.shape[0], -1)
|
||||
negative_flat = negative.reshape(negative.shape[0], -1)
|
||||
|
||||
# Calculate dot production
|
||||
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
|
||||
|
||||
# Squared norm of uncondition
|
||||
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
|
||||
|
||||
# st_star = v_cond^T * v_uncond / ||v_uncond||^2
|
||||
st_star = dot_product / squared_norm
|
||||
|
||||
return st_star.reshape([positive.shape[0]] + [1] * (positive.ndim - 1))
|
||||
|
||||
class CFGZeroStar:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"model": ("MODEL",),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
RETURN_NAMES = ("patched_model",)
|
||||
FUNCTION = "patch"
|
||||
CATEGORY = "advanced/guidance"
|
||||
|
||||
def patch(self, model):
|
||||
m = model.clone()
|
||||
def cfg_zero_star(args):
|
||||
guidance_scale = args['cond_scale']
|
||||
x = args['input']
|
||||
cond_p = args['cond_denoised']
|
||||
uncond_p = args['uncond_denoised']
|
||||
out = args["denoised"]
|
||||
alpha = optimized_scale(x - cond_p, x - uncond_p)
|
||||
|
||||
return out + uncond_p * (alpha - 1.0) + guidance_scale * uncond_p * (1.0 - alpha)
|
||||
m.set_model_sampler_post_cfg_function(cfg_zero_star)
|
||||
return (m, )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"CFGZeroStar": CFGZeroStar
|
||||
}
|
||||
@@ -20,6 +20,29 @@ class CLIPTextEncodeControlnet:
|
||||
c.append(n)
|
||||
return (c, )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"CLIPTextEncodeControlnet": CLIPTextEncodeControlnet
|
||||
class T5TokenizerOptions:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"clip": ("CLIP", ),
|
||||
"min_padding": ("INT", {"default": 0, "min": 0, "max": 10000, "step": 1}),
|
||||
"min_length": ("INT", {"default": 0, "min": 0, "max": 10000, "step": 1}),
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("CLIP",)
|
||||
FUNCTION = "set_options"
|
||||
|
||||
def set_options(self, clip, min_padding, min_length):
|
||||
clip = clip.clone()
|
||||
for t5_type in ["t5xxl", "pile_t5xl", "t5base", "mt5xl", "umt5xxl"]:
|
||||
clip.set_tokenizer_option("{}_min_padding".format(t5_type), min_padding)
|
||||
clip.set_tokenizer_option("{}_min_length".format(t5_type), min_length)
|
||||
|
||||
return (clip, )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"CLIPTextEncodeControlnet": CLIPTextEncodeControlnet,
|
||||
"T5TokenizerOptions": T5TokenizerOptions,
|
||||
}
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import math
|
||||
import comfy.samplers
|
||||
import comfy.sample
|
||||
from comfy.k_diffusion import sampling as k_diffusion_sampling
|
||||
@@ -249,6 +250,55 @@ class SetFirstSigma:
|
||||
sigmas[0] = sigma
|
||||
return (sigmas, )
|
||||
|
||||
class ExtendIntermediateSigmas:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"sigmas": ("SIGMAS", ),
|
||||
"steps": ("INT", {"default": 2, "min": 1, "max": 100}),
|
||||
"start_at_sigma": ("FLOAT", {"default": -1.0, "min": -1.0, "max": 20000.0, "step": 0.01, "round": False}),
|
||||
"end_at_sigma": ("FLOAT", {"default": 12.0, "min": 0.0, "max": 20000.0, "step": 0.01, "round": False}),
|
||||
"spacing": (['linear', 'cosine', 'sine'],),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SIGMAS",)
|
||||
CATEGORY = "sampling/custom_sampling/sigmas"
|
||||
|
||||
FUNCTION = "extend"
|
||||
|
||||
def extend(self, sigmas: torch.Tensor, steps: int, start_at_sigma: float, end_at_sigma: float, spacing: str):
|
||||
if start_at_sigma < 0:
|
||||
start_at_sigma = float("inf")
|
||||
|
||||
interpolator = {
|
||||
'linear': lambda x: x,
|
||||
'cosine': lambda x: torch.sin(x*math.pi/2),
|
||||
'sine': lambda x: 1 - torch.cos(x*math.pi/2)
|
||||
}[spacing]
|
||||
|
||||
# linear space for our interpolation function
|
||||
x = torch.linspace(0, 1, steps + 1, device=sigmas.device)[1:-1]
|
||||
computed_spacing = interpolator(x)
|
||||
|
||||
extended_sigmas = []
|
||||
for i in range(len(sigmas) - 1):
|
||||
sigma_current = sigmas[i]
|
||||
sigma_next = sigmas[i+1]
|
||||
|
||||
extended_sigmas.append(sigma_current)
|
||||
|
||||
if end_at_sigma <= sigma_current <= start_at_sigma:
|
||||
interpolated_steps = computed_spacing * (sigma_next - sigma_current) + sigma_current
|
||||
extended_sigmas.extend(interpolated_steps.tolist())
|
||||
|
||||
# Add the last sigma value
|
||||
if len(sigmas) > 0:
|
||||
extended_sigmas.append(sigmas[-1])
|
||||
|
||||
extended_sigmas = torch.FloatTensor(extended_sigmas)
|
||||
|
||||
return (extended_sigmas,)
|
||||
|
||||
class KSamplerSelect:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@@ -735,6 +785,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"SplitSigmasDenoise": SplitSigmasDenoise,
|
||||
"FlipSigmas": FlipSigmas,
|
||||
"SetFirstSigma": SetFirstSigma,
|
||||
"ExtendIntermediateSigmas": ExtendIntermediateSigmas,
|
||||
|
||||
"CFGGuider": CFGGuider,
|
||||
"DualCFGGuider": DualCFGGuider,
|
||||
|
||||
100
comfy_extras/nodes_fresca.py
Normal file
100
comfy_extras/nodes_fresca.py
Normal file
@@ -0,0 +1,100 @@
|
||||
# Code based on https://github.com/WikiChao/FreSca (MIT License)
|
||||
import torch
|
||||
import torch.fft as fft
|
||||
|
||||
|
||||
def Fourier_filter(x, scale_low=1.0, scale_high=1.5, freq_cutoff=20):
|
||||
"""
|
||||
Apply frequency-dependent scaling to an image tensor using Fourier transforms.
|
||||
|
||||
Parameters:
|
||||
x: Input tensor of shape (B, C, H, W)
|
||||
scale_low: Scaling factor for low-frequency components (default: 1.0)
|
||||
scale_high: Scaling factor for high-frequency components (default: 1.5)
|
||||
freq_cutoff: Number of frequency indices around center to consider as low-frequency (default: 20)
|
||||
|
||||
Returns:
|
||||
x_filtered: Filtered version of x in spatial domain with frequency-specific scaling applied.
|
||||
"""
|
||||
# Preserve input dtype and device
|
||||
dtype, device = x.dtype, x.device
|
||||
|
||||
# Convert to float32 for FFT computations
|
||||
x = x.to(torch.float32)
|
||||
|
||||
# 1) Apply FFT and shift low frequencies to center
|
||||
x_freq = fft.fftn(x, dim=(-2, -1))
|
||||
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
|
||||
|
||||
# Initialize mask with high-frequency scaling factor
|
||||
mask = torch.ones(x_freq.shape, device=device) * scale_high
|
||||
m = mask
|
||||
for d in range(len(x_freq.shape) - 2):
|
||||
dim = d + 2
|
||||
cc = x_freq.shape[dim] // 2
|
||||
f_c = min(freq_cutoff, cc)
|
||||
m = m.narrow(dim, cc - f_c, f_c * 2)
|
||||
|
||||
# Apply low-frequency scaling factor to center region
|
||||
m[:] = scale_low
|
||||
|
||||
# 3) Apply frequency-specific scaling
|
||||
x_freq = x_freq * mask
|
||||
|
||||
# 4) Convert back to spatial domain
|
||||
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
|
||||
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
|
||||
|
||||
# 5) Restore original dtype
|
||||
x_filtered = x_filtered.to(dtype)
|
||||
|
||||
return x_filtered
|
||||
|
||||
|
||||
class FreSca:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"model": ("MODEL",),
|
||||
"scale_low": ("FLOAT", {"default": 1.0, "min": 0, "max": 10, "step": 0.01,
|
||||
"tooltip": "Scaling factor for low-frequency components"}),
|
||||
"scale_high": ("FLOAT", {"default": 1.25, "min": 0, "max": 10, "step": 0.01,
|
||||
"tooltip": "Scaling factor for high-frequency components"}),
|
||||
"freq_cutoff": ("INT", {"default": 20, "min": 1, "max": 10000, "step": 1,
|
||||
"tooltip": "Number of frequency indices around center to consider as low-frequency"}),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
CATEGORY = "_for_testing"
|
||||
DESCRIPTION = "Applies frequency-dependent scaling to the guidance"
|
||||
def patch(self, model, scale_low, scale_high, freq_cutoff):
|
||||
def custom_cfg_function(args):
|
||||
cond = args["conds_out"][0]
|
||||
uncond = args["conds_out"][1]
|
||||
|
||||
guidance = cond - uncond
|
||||
filtered_guidance = Fourier_filter(
|
||||
guidance,
|
||||
scale_low=scale_low,
|
||||
scale_high=scale_high,
|
||||
freq_cutoff=freq_cutoff,
|
||||
)
|
||||
filtered_cond = filtered_guidance + uncond
|
||||
|
||||
return [filtered_cond, uncond]
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_sampler_pre_cfg_function(custom_cfg_function)
|
||||
|
||||
return (m,)
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"FreSca": FreSca,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"FreSca": "FreSca",
|
||||
}
|
||||
55
comfy_extras/nodes_hidream.py
Normal file
55
comfy_extras/nodes_hidream.py
Normal file
@@ -0,0 +1,55 @@
|
||||
import folder_paths
|
||||
import comfy.sd
|
||||
import comfy.model_management
|
||||
|
||||
|
||||
class QuadrupleCLIPLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ),
|
||||
"clip_name2": (folder_paths.get_filename_list("text_encoders"), ),
|
||||
"clip_name3": (folder_paths.get_filename_list("text_encoders"), ),
|
||||
"clip_name4": (folder_paths.get_filename_list("text_encoders"), )
|
||||
}}
|
||||
RETURN_TYPES = ("CLIP",)
|
||||
FUNCTION = "load_clip"
|
||||
|
||||
CATEGORY = "advanced/loaders"
|
||||
|
||||
DESCRIPTION = "[Recipes]\n\nhidream: long clip-l, long clip-g, t5xxl, llama_8b_3.1_instruct"
|
||||
|
||||
def load_clip(self, clip_name1, clip_name2, clip_name3, clip_name4):
|
||||
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1)
|
||||
clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2)
|
||||
clip_path3 = folder_paths.get_full_path_or_raise("text_encoders", clip_name3)
|
||||
clip_path4 = folder_paths.get_full_path_or_raise("text_encoders", clip_name4)
|
||||
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2, clip_path3, clip_path4], embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
return (clip,)
|
||||
|
||||
class CLIPTextEncodeHiDream:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"clip": ("CLIP", ),
|
||||
"clip_l": ("STRING", {"multiline": True, "dynamicPrompts": True}),
|
||||
"clip_g": ("STRING", {"multiline": True, "dynamicPrompts": True}),
|
||||
"t5xxl": ("STRING", {"multiline": True, "dynamicPrompts": True}),
|
||||
"llama": ("STRING", {"multiline": True, "dynamicPrompts": True})
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
FUNCTION = "encode"
|
||||
|
||||
CATEGORY = "advanced/conditioning"
|
||||
|
||||
def encode(self, clip, clip_l, clip_g, t5xxl, llama):
|
||||
|
||||
tokens = clip.tokenize(clip_g)
|
||||
tokens["l"] = clip.tokenize(clip_l)["l"]
|
||||
tokens["t5xxl"] = clip.tokenize(t5xxl)["t5xxl"]
|
||||
tokens["llama"] = clip.tokenize(llama)["llama"]
|
||||
return (clip.encode_from_tokens_scheduled(tokens), )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"QuadrupleCLIPLoader": QuadrupleCLIPLoader,
|
||||
"CLIPTextEncodeHiDream": CLIPTextEncodeHiDream,
|
||||
}
|
||||
@@ -209,6 +209,196 @@ def voxel_to_mesh(voxels, threshold=0.5, device=None):
|
||||
vertices = torch.fliplr(vertices)
|
||||
return vertices, faces
|
||||
|
||||
def voxel_to_mesh_surfnet(voxels, threshold=0.5, device=None):
|
||||
if device is None:
|
||||
device = torch.device("cpu")
|
||||
voxels = voxels.to(device)
|
||||
|
||||
D, H, W = voxels.shape
|
||||
|
||||
padded = torch.nn.functional.pad(voxels, (1, 1, 1, 1, 1, 1), 'constant', 0)
|
||||
z, y, x = torch.meshgrid(
|
||||
torch.arange(D, device=device),
|
||||
torch.arange(H, device=device),
|
||||
torch.arange(W, device=device),
|
||||
indexing='ij'
|
||||
)
|
||||
cell_positions = torch.stack([z.flatten(), y.flatten(), x.flatten()], dim=1)
|
||||
|
||||
corner_offsets = torch.tensor([
|
||||
[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0],
|
||||
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]
|
||||
], device=device)
|
||||
|
||||
corner_values = torch.zeros((cell_positions.shape[0], 8), device=device)
|
||||
for c, (dz, dy, dx) in enumerate(corner_offsets):
|
||||
corner_values[:, c] = padded[
|
||||
cell_positions[:, 0] + dz,
|
||||
cell_positions[:, 1] + dy,
|
||||
cell_positions[:, 2] + dx
|
||||
]
|
||||
|
||||
corner_signs = corner_values > threshold
|
||||
has_inside = torch.any(corner_signs, dim=1)
|
||||
has_outside = torch.any(~corner_signs, dim=1)
|
||||
contains_surface = has_inside & has_outside
|
||||
|
||||
active_cells = cell_positions[contains_surface]
|
||||
active_signs = corner_signs[contains_surface]
|
||||
active_values = corner_values[contains_surface]
|
||||
|
||||
if active_cells.shape[0] == 0:
|
||||
return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)
|
||||
|
||||
edges = torch.tensor([
|
||||
[0, 1], [0, 2], [0, 4], [1, 3],
|
||||
[1, 5], [2, 3], [2, 6], [3, 7],
|
||||
[4, 5], [4, 6], [5, 7], [6, 7]
|
||||
], device=device)
|
||||
|
||||
cell_vertices = {}
|
||||
progress = comfy.utils.ProgressBar(100)
|
||||
|
||||
for edge_idx, (e1, e2) in enumerate(edges):
|
||||
progress.update(1)
|
||||
crossing = active_signs[:, e1] != active_signs[:, e2]
|
||||
if not crossing.any():
|
||||
continue
|
||||
|
||||
cell_indices = torch.nonzero(crossing, as_tuple=True)[0]
|
||||
|
||||
v1 = active_values[cell_indices, e1]
|
||||
v2 = active_values[cell_indices, e2]
|
||||
|
||||
t = torch.zeros_like(v1, device=device)
|
||||
denom = v2 - v1
|
||||
valid = denom != 0
|
||||
t[valid] = (threshold - v1[valid]) / denom[valid]
|
||||
t[~valid] = 0.5
|
||||
|
||||
p1 = corner_offsets[e1].float()
|
||||
p2 = corner_offsets[e2].float()
|
||||
|
||||
intersection = p1.unsqueeze(0) + t.unsqueeze(1) * (p2.unsqueeze(0) - p1.unsqueeze(0))
|
||||
|
||||
for i, point in zip(cell_indices.tolist(), intersection):
|
||||
if i not in cell_vertices:
|
||||
cell_vertices[i] = []
|
||||
cell_vertices[i].append(point)
|
||||
|
||||
# Calculate the final vertices as the average of intersection points for each cell
|
||||
vertices = []
|
||||
vertex_lookup = {}
|
||||
|
||||
vert_progress_mod = round(len(cell_vertices)/50)
|
||||
|
||||
for i, points in cell_vertices.items():
|
||||
if not i % vert_progress_mod:
|
||||
progress.update(1)
|
||||
|
||||
if points:
|
||||
vertex = torch.stack(points).mean(dim=0)
|
||||
vertex = vertex + active_cells[i].float()
|
||||
vertex_lookup[tuple(active_cells[i].tolist())] = len(vertices)
|
||||
vertices.append(vertex)
|
||||
|
||||
if not vertices:
|
||||
return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)
|
||||
|
||||
final_vertices = torch.stack(vertices)
|
||||
|
||||
inside_corners_mask = active_signs
|
||||
outside_corners_mask = ~active_signs
|
||||
|
||||
inside_counts = inside_corners_mask.sum(dim=1, keepdim=True).float()
|
||||
outside_counts = outside_corners_mask.sum(dim=1, keepdim=True).float()
|
||||
|
||||
inside_pos = torch.zeros((active_cells.shape[0], 3), device=device)
|
||||
outside_pos = torch.zeros((active_cells.shape[0], 3), device=device)
|
||||
|
||||
for i in range(8):
|
||||
mask_inside = inside_corners_mask[:, i].unsqueeze(1)
|
||||
mask_outside = outside_corners_mask[:, i].unsqueeze(1)
|
||||
inside_pos += corner_offsets[i].float().unsqueeze(0) * mask_inside
|
||||
outside_pos += corner_offsets[i].float().unsqueeze(0) * mask_outside
|
||||
|
||||
inside_pos /= inside_counts
|
||||
outside_pos /= outside_counts
|
||||
gradients = inside_pos - outside_pos
|
||||
|
||||
pos_dirs = torch.tensor([
|
||||
[1, 0, 0],
|
||||
[0, 1, 0],
|
||||
[0, 0, 1]
|
||||
], device=device)
|
||||
|
||||
cross_products = [
|
||||
torch.linalg.cross(pos_dirs[i].float(), pos_dirs[j].float())
|
||||
for i in range(3) for j in range(i+1, 3)
|
||||
]
|
||||
|
||||
faces = []
|
||||
all_keys = set(vertex_lookup.keys())
|
||||
|
||||
face_progress_mod = round(len(active_cells)/38*3)
|
||||
|
||||
for pair_idx, (i, j) in enumerate([(0,1), (0,2), (1,2)]):
|
||||
dir_i = pos_dirs[i]
|
||||
dir_j = pos_dirs[j]
|
||||
cross_product = cross_products[pair_idx]
|
||||
|
||||
ni_positions = active_cells + dir_i
|
||||
nj_positions = active_cells + dir_j
|
||||
diag_positions = active_cells + dir_i + dir_j
|
||||
|
||||
alignments = torch.matmul(gradients, cross_product)
|
||||
|
||||
valid_quads = []
|
||||
quad_indices = []
|
||||
|
||||
for idx, active_cell in enumerate(active_cells):
|
||||
if not idx % face_progress_mod:
|
||||
progress.update(1)
|
||||
cell_key = tuple(active_cell.tolist())
|
||||
ni_key = tuple(ni_positions[idx].tolist())
|
||||
nj_key = tuple(nj_positions[idx].tolist())
|
||||
diag_key = tuple(diag_positions[idx].tolist())
|
||||
|
||||
if cell_key in all_keys and ni_key in all_keys and nj_key in all_keys and diag_key in all_keys:
|
||||
v0 = vertex_lookup[cell_key]
|
||||
v1 = vertex_lookup[ni_key]
|
||||
v2 = vertex_lookup[nj_key]
|
||||
v3 = vertex_lookup[diag_key]
|
||||
|
||||
valid_quads.append((v0, v1, v2, v3))
|
||||
quad_indices.append(idx)
|
||||
|
||||
for q_idx, (v0, v1, v2, v3) in enumerate(valid_quads):
|
||||
cell_idx = quad_indices[q_idx]
|
||||
if alignments[cell_idx] > 0:
|
||||
faces.append(torch.tensor([v0, v1, v3], device=device, dtype=torch.long))
|
||||
faces.append(torch.tensor([v0, v3, v2], device=device, dtype=torch.long))
|
||||
else:
|
||||
faces.append(torch.tensor([v0, v3, v1], device=device, dtype=torch.long))
|
||||
faces.append(torch.tensor([v0, v2, v3], device=device, dtype=torch.long))
|
||||
|
||||
if faces:
|
||||
faces = torch.stack(faces)
|
||||
else:
|
||||
faces = torch.zeros((0, 3), dtype=torch.long, device=device)
|
||||
|
||||
v_min = 0
|
||||
v_max = max(D, H, W)
|
||||
|
||||
final_vertices = final_vertices - (v_min + v_max) / 2
|
||||
|
||||
scale = (v_max - v_min) / 2
|
||||
if scale > 0:
|
||||
final_vertices = final_vertices / scale
|
||||
|
||||
final_vertices = torch.fliplr(final_vertices)
|
||||
|
||||
return final_vertices, faces
|
||||
|
||||
class MESH:
|
||||
def __init__(self, vertices, faces):
|
||||
@@ -237,6 +427,34 @@ class VoxelToMeshBasic:
|
||||
|
||||
return (MESH(torch.stack(vertices), torch.stack(faces)), )
|
||||
|
||||
class VoxelToMesh:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"voxel": ("VOXEL", ),
|
||||
"algorithm": (["surface net", "basic"], ),
|
||||
"threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MESH",)
|
||||
FUNCTION = "decode"
|
||||
|
||||
CATEGORY = "3d"
|
||||
|
||||
def decode(self, voxel, algorithm, threshold):
|
||||
vertices = []
|
||||
faces = []
|
||||
|
||||
if algorithm == "basic":
|
||||
mesh_function = voxel_to_mesh
|
||||
elif algorithm == "surface net":
|
||||
mesh_function = voxel_to_mesh_surfnet
|
||||
|
||||
for x in voxel.data:
|
||||
v, f = mesh_function(x, threshold=threshold, device=None)
|
||||
vertices.append(v)
|
||||
faces.append(f)
|
||||
|
||||
return (MESH(torch.stack(vertices), torch.stack(faces)), )
|
||||
|
||||
|
||||
def save_glb(vertices, faces, filepath, metadata=None):
|
||||
"""
|
||||
@@ -244,7 +462,7 @@ def save_glb(vertices, faces, filepath, metadata=None):
|
||||
|
||||
Parameters:
|
||||
vertices: torch.Tensor of shape (N, 3) - The vertex coordinates
|
||||
faces: torch.Tensor of shape (M, 4) or (M, 3) - The face indices (quad or triangle faces)
|
||||
faces: torch.Tensor of shape (M, 3) - The face indices (triangle faces)
|
||||
filepath: str - Output filepath (should end with .glb)
|
||||
"""
|
||||
|
||||
@@ -411,5 +629,6 @@ NODE_CLASS_MAPPINGS = {
|
||||
"Hunyuan3Dv2ConditioningMultiView": Hunyuan3Dv2ConditioningMultiView,
|
||||
"VAEDecodeHunyuan3D": VAEDecodeHunyuan3D,
|
||||
"VoxelToMeshBasic": VoxelToMeshBasic,
|
||||
"VoxelToMesh": VoxelToMesh,
|
||||
"SaveGLB": SaveGLB,
|
||||
}
|
||||
|
||||
@@ -21,8 +21,8 @@ class Load3D():
|
||||
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("IMAGE", "MASK", "STRING")
|
||||
RETURN_NAMES = ("image", "mask", "mesh_path")
|
||||
RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "IMAGE", "LOAD3D_CAMERA")
|
||||
RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "lineart", "camera_info")
|
||||
|
||||
FUNCTION = "process"
|
||||
EXPERIMENTAL = True
|
||||
@@ -32,12 +32,16 @@ class Load3D():
|
||||
def process(self, model_file, image, **kwargs):
|
||||
image_path = folder_paths.get_annotated_filepath(image['image'])
|
||||
mask_path = folder_paths.get_annotated_filepath(image['mask'])
|
||||
normal_path = folder_paths.get_annotated_filepath(image['normal'])
|
||||
lineart_path = folder_paths.get_annotated_filepath(image['lineart'])
|
||||
|
||||
load_image_node = nodes.LoadImage()
|
||||
output_image, ignore_mask = load_image_node.load_image(image=image_path)
|
||||
ignore_image, output_mask = load_image_node.load_image(image=mask_path)
|
||||
normal_image, ignore_mask2 = load_image_node.load_image(image=normal_path)
|
||||
lineart_image, ignore_mask3 = load_image_node.load_image(image=lineart_path)
|
||||
|
||||
return output_image, output_mask, model_file,
|
||||
return output_image, output_mask, model_file, normal_image, lineart_image, image['camera_info']
|
||||
|
||||
class Load3DAnimation():
|
||||
@classmethod
|
||||
@@ -55,8 +59,8 @@ class Load3DAnimation():
|
||||
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("IMAGE", "MASK", "STRING")
|
||||
RETURN_NAMES = ("image", "mask", "mesh_path")
|
||||
RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "LOAD3D_CAMERA")
|
||||
RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "camera_info")
|
||||
|
||||
FUNCTION = "process"
|
||||
EXPERIMENTAL = True
|
||||
@@ -66,18 +70,23 @@ class Load3DAnimation():
|
||||
def process(self, model_file, image, **kwargs):
|
||||
image_path = folder_paths.get_annotated_filepath(image['image'])
|
||||
mask_path = folder_paths.get_annotated_filepath(image['mask'])
|
||||
normal_path = folder_paths.get_annotated_filepath(image['normal'])
|
||||
|
||||
load_image_node = nodes.LoadImage()
|
||||
output_image, ignore_mask = load_image_node.load_image(image=image_path)
|
||||
ignore_image, output_mask = load_image_node.load_image(image=mask_path)
|
||||
normal_image, ignore_mask2 = load_image_node.load_image(image=normal_path)
|
||||
|
||||
return output_image, output_mask, model_file,
|
||||
return output_image, output_mask, model_file, normal_image, image['camera_info']
|
||||
|
||||
class Preview3D():
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"model_file": ("STRING", {"default": "", "multiline": False}),
|
||||
},
|
||||
"optional": {
|
||||
"camera_info": ("LOAD3D_CAMERA", {})
|
||||
}}
|
||||
|
||||
OUTPUT_NODE = True
|
||||
@@ -89,13 +98,22 @@ class Preview3D():
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def process(self, model_file, **kwargs):
|
||||
return {"ui": {"model_file": [model_file]}, "result": ()}
|
||||
camera_info = kwargs.get("camera_info", None)
|
||||
|
||||
return {
|
||||
"ui": {
|
||||
"result": [model_file, camera_info]
|
||||
}
|
||||
}
|
||||
|
||||
class Preview3DAnimation():
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"model_file": ("STRING", {"default": "", "multiline": False}),
|
||||
},
|
||||
"optional": {
|
||||
"camera_info": ("LOAD3D_CAMERA", {})
|
||||
}}
|
||||
|
||||
OUTPUT_NODE = True
|
||||
@@ -107,7 +125,13 @@ class Preview3DAnimation():
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def process(self, model_file, **kwargs):
|
||||
return {"ui": {"model_file": [model_file]}, "result": ()}
|
||||
camera_info = kwargs.get("camera_info", None)
|
||||
|
||||
return {
|
||||
"ui": {
|
||||
"result": [model_file, camera_info]
|
||||
}
|
||||
}
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"Load3D": Load3D,
|
||||
|
||||
@@ -38,6 +38,7 @@ class LTXVImgToVideo:
|
||||
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
|
||||
"length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
||||
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0}),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
||||
@@ -46,7 +47,7 @@ class LTXVImgToVideo:
|
||||
CATEGORY = "conditioning/video_models"
|
||||
FUNCTION = "generate"
|
||||
|
||||
def generate(self, positive, negative, image, vae, width, height, length, batch_size):
|
||||
def generate(self, positive, negative, image, vae, width, height, length, batch_size, strength):
|
||||
pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||
encode_pixels = pixels[:, :, :, :3]
|
||||
t = vae.encode(encode_pixels)
|
||||
@@ -59,7 +60,7 @@ class LTXVImgToVideo:
|
||||
dtype=torch.float32,
|
||||
device=latent.device,
|
||||
)
|
||||
conditioning_latent_frames_mask[:, :, :t.shape[2]] = 0
|
||||
conditioning_latent_frames_mask[:, :, :t.shape[2]] = 1.0 - strength
|
||||
|
||||
return (positive, negative, {"samples": latent, "noise_mask": conditioning_latent_frames_mask}, )
|
||||
|
||||
@@ -152,6 +153,15 @@ class LTXVAddGuide:
|
||||
return node_helpers.conditioning_set_values(cond, {"keyframe_idxs": keyframe_idxs})
|
||||
|
||||
def append_keyframe(self, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors):
|
||||
_, latent_idx = self.get_latent_index(
|
||||
cond=positive,
|
||||
latent_length=latent_image.shape[2],
|
||||
guide_length=guiding_latent.shape[2],
|
||||
frame_idx=frame_idx,
|
||||
scale_factors=scale_factors,
|
||||
)
|
||||
noise_mask[:, :, latent_idx:latent_idx + guiding_latent.shape[2]] = 1.0
|
||||
|
||||
positive = self.add_keyframe_index(positive, frame_idx, guiding_latent, scale_factors)
|
||||
negative = self.add_keyframe_index(negative, frame_idx, guiding_latent, scale_factors)
|
||||
|
||||
@@ -385,7 +395,7 @@ def encode_single_frame(output_file, image_array: np.ndarray, crf):
|
||||
container = av.open(output_file, "w", format="mp4")
|
||||
try:
|
||||
stream = container.add_stream(
|
||||
"h264", rate=1, options={"crf": str(crf), "preset": "veryfast"}
|
||||
"libx264", rate=1, options={"crf": str(crf), "preset": "veryfast"}
|
||||
)
|
||||
stream.height = image_array.shape[0]
|
||||
stream.width = image_array.shape[1]
|
||||
@@ -446,7 +456,6 @@ class LTXVPreprocess:
|
||||
CATEGORY = "image"
|
||||
|
||||
def preprocess(self, image, img_compression):
|
||||
if img_compression > 0:
|
||||
output_images = []
|
||||
for i in range(image.shape[0]):
|
||||
output_images.append(preprocess(image[i], img_compression))
|
||||
|
||||
@@ -2,7 +2,11 @@ import numpy as np
|
||||
import scipy.ndimage
|
||||
import torch
|
||||
import comfy.utils
|
||||
import node_helpers
|
||||
import folder_paths
|
||||
import random
|
||||
|
||||
import nodes
|
||||
from nodes import MAX_RESOLUTION
|
||||
|
||||
def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
|
||||
@@ -87,6 +91,7 @@ class ImageCompositeMasked:
|
||||
CATEGORY = "image"
|
||||
|
||||
def composite(self, destination, source, x, y, resize_source, mask = None):
|
||||
destination, source = node_helpers.image_alpha_fix(destination, source)
|
||||
destination = destination.clone().movedim(-1, 1)
|
||||
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
|
||||
return (output,)
|
||||
@@ -360,6 +365,30 @@ class ThresholdMask:
|
||||
mask = (mask > value).float()
|
||||
return (mask,)
|
||||
|
||||
# Mask Preview - original implement from
|
||||
# https://github.com/cubiq/ComfyUI_essentials/blob/9d9f4bedfc9f0321c19faf71855e228c93bd0dc9/mask.py#L81
|
||||
# upstream requested in https://github.com/Kosinkadink/rfcs/blob/main/rfcs/0000-corenodes.md#preview-nodes
|
||||
class MaskPreview(nodes.SaveImage):
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_temp_directory()
|
||||
self.type = "temp"
|
||||
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
||||
self.compress_level = 4
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {"mask": ("MASK",), },
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
||||
}
|
||||
|
||||
FUNCTION = "execute"
|
||||
CATEGORY = "mask"
|
||||
|
||||
def execute(self, mask, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
||||
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
|
||||
return self.save_images(preview, filename_prefix, prompt, extra_pnginfo)
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"LatentCompositeMasked": LatentCompositeMasked,
|
||||
@@ -374,6 +403,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"FeatherMask": FeatherMask,
|
||||
"GrowMask": GrowMask,
|
||||
"ThresholdMask": ThresholdMask,
|
||||
"MaskPreview": MaskPreview
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
|
||||
@@ -209,6 +209,9 @@ def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefi
|
||||
metadata["modelspec.predict_key"] = "epsilon"
|
||||
elif model.model.model_type == comfy.model_base.ModelType.V_PREDICTION:
|
||||
metadata["modelspec.predict_key"] = "v"
|
||||
extra_keys["v_pred"] = torch.tensor([])
|
||||
if getattr(model_sampling, "zsnr", False):
|
||||
extra_keys["ztsnr"] = torch.tensor([])
|
||||
|
||||
if not args.disable_metadata:
|
||||
metadata["prompt"] = prompt_info
|
||||
@@ -273,7 +276,7 @@ class CLIPSave:
|
||||
comfy.model_management.load_models_gpu([clip.load_model()], force_patch_weights=True)
|
||||
clip_sd = clip.get_sd()
|
||||
|
||||
for prefix in ["clip_l.", "clip_g.", ""]:
|
||||
for prefix in ["clip_l.", "clip_g.", "clip_h.", "t5xxl.", "pile_t5xl.", "mt5xl.", "umt5xxl.", "t5base.", "gemma2_2b.", "llama.", "hydit_clip.", ""]:
|
||||
k = list(filter(lambda a: a.startswith(prefix), clip_sd.keys()))
|
||||
current_clip_sd = {}
|
||||
for x in k:
|
||||
|
||||
@@ -244,6 +244,30 @@ class ModelMergeCosmos14B(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
class ModelMergeWAN2_1(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
DESCRIPTION = "1.3B model has 30 blocks, 14B model has 40 blocks. Image to video model has the extra img_emb."
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
|
||||
arg_dict["patch_embedding."] = argument
|
||||
arg_dict["time_embedding."] = argument
|
||||
arg_dict["time_projection."] = argument
|
||||
arg_dict["text_embedding."] = argument
|
||||
arg_dict["img_emb."] = argument
|
||||
|
||||
for i in range(40):
|
||||
arg_dict["blocks.{}.".format(i)] = argument
|
||||
|
||||
arg_dict["head."] = argument
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ModelMergeSD1": ModelMergeSD1,
|
||||
"ModelMergeSD2": ModelMergeSD1, #SD1 and SD2 have the same blocks
|
||||
@@ -256,4 +280,5 @@ NODE_CLASS_MAPPINGS = {
|
||||
"ModelMergeLTXV": ModelMergeLTXV,
|
||||
"ModelMergeCosmos7B": ModelMergeCosmos7B,
|
||||
"ModelMergeCosmos14B": ModelMergeCosmos14B,
|
||||
"ModelMergeWAN2_1": ModelMergeWAN2_1,
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user