Support for Control Loras.
Control loras are controlnets where some of the weights are stored in "lora" format: an up and a down low rank matrice that when multiplied together and added to the unet weight give the controlnet weight. This allows a much smaller memory footprint depending on the rank of the matrices. These controlnets are used just like regular ones.
This commit is contained in:
@@ -478,7 +478,7 @@ def pre_run_control(model, conds):
|
||||
timestep_end = None
|
||||
percent_to_timestep_function = lambda a: model.sigma_to_t(model.t_to_sigma(torch.tensor(a) * 999.0))
|
||||
if 'control' in x[1]:
|
||||
x[1]['control'].pre_run(model.inner_model, percent_to_timestep_function)
|
||||
x[1]['control'].pre_run(model.inner_model.inner_model, percent_to_timestep_function)
|
||||
|
||||
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
|
||||
cond_cnets = []
|
||||
|
||||
Reference in New Issue
Block a user