Take some code from chainner to implement ESRGAN and other upscale models.
This commit is contained in:
31
comfy_extras/chainner_models/architecture/timm/helpers.py
Normal file
31
comfy_extras/chainner_models/architecture/timm/helpers.py
Normal file
@@ -0,0 +1,31 @@
|
||||
""" Layer/Module Helpers
|
||||
Hacked together by / Copyright 2020 Ross Wightman
|
||||
"""
|
||||
import collections.abc
|
||||
from itertools import repeat
|
||||
|
||||
|
||||
# From PyTorch internals
|
||||
def _ntuple(n):
|
||||
def parse(x):
|
||||
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
||||
return x
|
||||
return tuple(repeat(x, n))
|
||||
|
||||
return parse
|
||||
|
||||
|
||||
to_1tuple = _ntuple(1)
|
||||
to_2tuple = _ntuple(2)
|
||||
to_3tuple = _ntuple(3)
|
||||
to_4tuple = _ntuple(4)
|
||||
to_ntuple = _ntuple
|
||||
|
||||
|
||||
def make_divisible(v, divisor=8, min_value=None, round_limit=0.9):
|
||||
min_value = min_value or divisor
|
||||
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
||||
# Make sure that round down does not go down by more than 10%.
|
||||
if new_v < round_limit * v:
|
||||
new_v += divisor
|
||||
return new_v
|
||||
Reference in New Issue
Block a user