Pull in latest upscale model code from chainner.
This commit is contained in:
@@ -0,0 +1,110 @@
|
||||
import math
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class CA_layer(nn.Module):
|
||||
def __init__(self, channel, reduction=16):
|
||||
super(CA_layer, self).__init__()
|
||||
# global average pooling
|
||||
self.gap = nn.AdaptiveAvgPool2d(1)
|
||||
self.fc = nn.Sequential(
|
||||
nn.Conv2d(channel, channel // reduction, kernel_size=(1, 1), bias=False),
|
||||
nn.GELU(),
|
||||
nn.Conv2d(channel // reduction, channel, kernel_size=(1, 1), bias=False),
|
||||
# nn.Sigmoid()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
y = self.fc(self.gap(x))
|
||||
return x * y.expand_as(x)
|
||||
|
||||
|
||||
class Simple_CA_layer(nn.Module):
|
||||
def __init__(self, channel):
|
||||
super(Simple_CA_layer, self).__init__()
|
||||
self.gap = nn.AdaptiveAvgPool2d(1)
|
||||
self.fc = nn.Conv2d(
|
||||
in_channels=channel,
|
||||
out_channels=channel,
|
||||
kernel_size=1,
|
||||
padding=0,
|
||||
stride=1,
|
||||
groups=1,
|
||||
bias=True,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return x * self.fc(self.gap(x))
|
||||
|
||||
|
||||
class ECA_layer(nn.Module):
|
||||
"""Constructs a ECA module.
|
||||
Args:
|
||||
channel: Number of channels of the input feature map
|
||||
k_size: Adaptive selection of kernel size
|
||||
"""
|
||||
|
||||
def __init__(self, channel):
|
||||
super(ECA_layer, self).__init__()
|
||||
|
||||
b = 1
|
||||
gamma = 2
|
||||
k_size = int(abs(math.log(channel, 2) + b) / gamma)
|
||||
k_size = k_size if k_size % 2 else k_size + 1
|
||||
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.conv = nn.Conv1d(
|
||||
1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False
|
||||
)
|
||||
# self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
# x: input features with shape [b, c, h, w]
|
||||
# b, c, h, w = x.size()
|
||||
|
||||
# feature descriptor on the global spatial information
|
||||
y = self.avg_pool(x)
|
||||
|
||||
# Two different branches of ECA module
|
||||
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
|
||||
|
||||
# Multi-scale information fusion
|
||||
# y = self.sigmoid(y)
|
||||
|
||||
return x * y.expand_as(x)
|
||||
|
||||
|
||||
class ECA_MaxPool_layer(nn.Module):
|
||||
"""Constructs a ECA module.
|
||||
Args:
|
||||
channel: Number of channels of the input feature map
|
||||
k_size: Adaptive selection of kernel size
|
||||
"""
|
||||
|
||||
def __init__(self, channel):
|
||||
super(ECA_MaxPool_layer, self).__init__()
|
||||
|
||||
b = 1
|
||||
gamma = 2
|
||||
k_size = int(abs(math.log(channel, 2) + b) / gamma)
|
||||
k_size = k_size if k_size % 2 else k_size + 1
|
||||
self.max_pool = nn.AdaptiveMaxPool2d(1)
|
||||
self.conv = nn.Conv1d(
|
||||
1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False
|
||||
)
|
||||
# self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
# x: input features with shape [b, c, h, w]
|
||||
# b, c, h, w = x.size()
|
||||
|
||||
# feature descriptor on the global spatial information
|
||||
y = self.max_pool(x)
|
||||
|
||||
# Two different branches of ECA module
|
||||
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
|
||||
|
||||
# Multi-scale information fusion
|
||||
# y = self.sigmoid(y)
|
||||
|
||||
return x * y.expand_as(x)
|
||||
Reference in New Issue
Block a user