Basic Genmo Mochi video model support.

To use:
"Load CLIP" node with t5xxl + type mochi
"Load Diffusion Model" node with the mochi dit file.
"Load VAE" with the mochi vae file.

EmptyMochiLatentVideo node for the latent.
euler + linear_quadratic in the KSampler node.
This commit is contained in:
comfyanonymous
2024-10-26 06:54:00 -04:00
parent c3ffbae067
commit 5cbb01bc2f
18 changed files with 1677 additions and 24 deletions

View File

@@ -366,6 +366,27 @@ def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6):
sigs += [0.0]
return torch.FloatTensor(sigs)
# from: https://github.com/genmoai/models/blob/main/src/mochi_preview/infer.py#L41
def linear_quadratic_schedule(model_sampling, steps, threshold_noise=0.025, linear_steps=None):
if steps == 1:
sigma_schedule = [1.0, 0.0]
else:
if linear_steps is None:
linear_steps = steps // 2
linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)]
threshold_noise_step_diff = linear_steps - threshold_noise * steps
quadratic_steps = steps - linear_steps
quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps ** 2)
linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps ** 2)
const = quadratic_coef * (linear_steps ** 2)
quadratic_sigma_schedule = [
quadratic_coef * (i ** 2) + linear_coef * i + const
for i in range(linear_steps, steps)
]
sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0]
sigma_schedule = [1.0 - x for x in sigma_schedule]
return torch.FloatTensor(sigma_schedule) * model_sampling.sigma_max.cpu()
def get_mask_aabb(masks):
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
@@ -732,7 +753,7 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "beta"]
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "beta", "linear_quadratic"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
def calculate_sigmas(model_sampling, scheduler_name, steps):
@@ -750,6 +771,8 @@ def calculate_sigmas(model_sampling, scheduler_name, steps):
sigmas = normal_scheduler(model_sampling, steps, sgm=True)
elif scheduler_name == "beta":
sigmas = beta_scheduler(model_sampling, steps)
elif scheduler_name == "linear_quadratic":
sigmas = linear_quadratic_schedule(model_sampling, steps)
else:
logging.error("error invalid scheduler {}".format(scheduler_name))
return sigmas