UNET weights can now be stored in fp8.
--fp8_e4m3fn-unet and --fp8_e5m2-unet are the two different formats supported by pytorch.
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
import torch
|
||||
import math
|
||||
import os
|
||||
import contextlib
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
import comfy.model_detection
|
||||
@@ -147,24 +148,31 @@ class ControlNet(ControlBase):
|
||||
else:
|
||||
return None
|
||||
|
||||
dtype = self.control_model.dtype
|
||||
if comfy.model_management.supports_dtype(self.device, dtype):
|
||||
precision_scope = lambda a: contextlib.nullcontext(a)
|
||||
else:
|
||||
precision_scope = torch.autocast
|
||||
dtype = torch.float32
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(self.device)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
|
||||
|
||||
context = cond['c_crossattn']
|
||||
y = cond.get('y', None)
|
||||
if y is not None:
|
||||
y = y.to(self.control_model.dtype)
|
||||
y = y.to(dtype)
|
||||
timestep = self.model_sampling_current.timestep(t)
|
||||
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
|
||||
|
||||
control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(self.control_model.dtype), y=y)
|
||||
with precision_scope(comfy.model_management.get_autocast_device(self.device)):
|
||||
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y)
|
||||
return self.control_merge(None, control, control_prev, output_dtype)
|
||||
|
||||
def copy(self):
|
||||
|
||||
Reference in New Issue
Block a user