UNET weights can now be stored in fp8.

--fp8_e4m3fn-unet and --fp8_e5m2-unet are the two different formats
supported by pytorch.
This commit is contained in:
comfyanonymous
2023-12-04 11:10:00 -05:00
parent af365e4dd1
commit 31b0f6f3d8
6 changed files with 47 additions and 10 deletions

View File

@@ -1,6 +1,7 @@
import torch
import math
import os
import contextlib
import comfy.utils
import comfy.model_management
import comfy.model_detection
@@ -147,24 +148,31 @@ class ControlNet(ControlBase):
else:
return None
dtype = self.control_model.dtype
if comfy.model_management.supports_dtype(self.device, dtype):
precision_scope = lambda a: contextlib.nullcontext(a)
else:
precision_scope = torch.autocast
dtype = torch.float32
output_dtype = x_noisy.dtype
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(self.device)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
context = cond['c_crossattn']
y = cond.get('y', None)
if y is not None:
y = y.to(self.control_model.dtype)
y = y.to(dtype)
timestep = self.model_sampling_current.timestep(t)
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(self.control_model.dtype), y=y)
with precision_scope(comfy.model_management.get_autocast_device(self.device)):
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y)
return self.control_merge(None, control, control_prev, output_dtype)
def copy(self):