Files
squoosh/codecs/mozjpeg_enc/mozjpeg_enc.c
2018-05-15 13:23:41 +01:00

161 lines
5.6 KiB
C

#include "emscripten.h"
#include <stdlib.h>
#include <inttypes.h>
#include <stdio.h>
#include <setjmp.h>
#include "jpeglib.h"
EMSCRIPTEN_KEEPALIVE
int version() {
return JPEG_LIB_VERSION;
}
EMSCRIPTEN_KEEPALIVE
uint8_t* create_buffer(int width, int height) {
return malloc(width * height * 4 * sizeof(uint8_t));
}
EMSCRIPTEN_KEEPALIVE
void destroy_buffer(uint8_t* p) {
free(p);
}
int result[2];
EMSCRIPTEN_KEEPALIVE
void encode(uint8_t* image_buffer, int image_width, int image_height, int quality) {
// Manually convert RGBA data into RGB
for(int y = 0; y < image_height; y++) {
for(int x = 0; x < image_width; x++) {
image_buffer[(y*image_width + x)*3 + 0] = image_buffer[(y*image_width + x)*4 + 0];
image_buffer[(y*image_width + x)*3 + 1] = image_buffer[(y*image_width + x)*4 + 1];
image_buffer[(y*image_width + x)*3 + 2] = image_buffer[(y*image_width + x)*4 + 2];
}
}
// The code below is basically the `write_JPEG_file` function from
// https://github.com/mozilla/mozjpeg/blob/master/example.c
// I just write to memory instead of a file.
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
uint8_t* output;
unsigned long size;
/* Step 1: allocate and initialize JPEG compression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
/* Here we use the library-supplied code to send compressed data to a
* stdio stream. You can also write your own code to do something else.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to write binary files.
*/
// if ((outfile = fopen(filename, "wb")) == NULL) {
// fprintf(stderr, "can't open %s\n", filename);
// exit(1);
// }
jpeg_mem_dest(&cinfo, &output, &size);
/* Step 3: set parameters for compression */
/* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = image_width; /* image width and height, in pixels */
cinfo.image_height = image_height;
cinfo.input_components = 3; /* # of color components per pixel */
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
/* Step 4: Start compressor */
/* TRUE ensures that we will write a complete interchange-JPEG file.
* Pass TRUE unless you are very sure of what you're doing.
*/
jpeg_start_compress(&cinfo, TRUE);
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
/* Here we use the library's state variable cinfo.next_scanline as the
* loop counter, so that we don't have to keep track ourselves.
* To keep things simple, we pass one scanline per call; you can pass
* more if you wish, though.
*/
row_stride = image_width * 3; /* JSAMPLEs per row in image_buffer */
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride];
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
}
/* Step 6: Finish compression */
jpeg_finish_compress(&cinfo);
/* Step 7: release JPEG compression object */
result[0] = (int)output;
result[1] = size;
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress(&cinfo);
/* And we're done! */
}
EMSCRIPTEN_KEEPALIVE
void free_result(uint8_t* result) {
free(result); // not sure if this is right with mozjpeg
}
EMSCRIPTEN_KEEPALIVE
int get_result_pointer() {
return result[0];
}
EMSCRIPTEN_KEEPALIVE
int get_result_size() {
return result[1];
}